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Foreword 

The book Causality: The p-adic Theory by Vladimir Anashin is devoted to the study 
of the question posed by Albert Einstein: “Does God play dice ?” Or in other words, 
is there randomness inherent in our world at a fundamental level? 

According to modern quantum mechanics, there is an irreducible randomness of 
the fundamental physical laws. However, Einstein did not agree with this statement 
and in the discussion with Niels Bohr presented arguments that such a situation is 
impossible. 

Although Einstein failed to convince Bohr that he was right, as a result of this 
discussion, the famous article of Einstein, Podolsky, and Rozen appeared, which 
became the initial stage in the development of modern quantum information. These 
studies were continued by Erwin Schrodinger, John Bell, and many others and now 
forms the basis of quantum technology. 

However, the question of whether Nature is deterministic at a fundamental level 
or whether it has an element of chance continues to be debated in the literature. 
In particular, the Nobel laureate Gerald ’t Hooft believes that there is no chance of 
randomness on the fundamental level. This point of view is shared by the author of 
this book, Vladimir Anashin, but with a caveat: He presents strong mathematical 
arguments that if causality is inherent to Nature, then on the base of observational 
data it is impossible to answer that question “yes” or “no.” 

Although the current dominant view is that there is irreducible randomness at the 
fundamental level, for the future development of the theory of quantum cosmology, 
black hole physics, chaos, big data theory, and artificial intelligence, it may be useful 
and even necessary to consider an alternative point of view when at the fundamental 
level the laws of nature are deterministic, and chaotic and random behavior arises 
as a consequence of an inevitable error in determining the initial data. The author 
of the book, Vladimir Anashin, is a professor of computer science at Moscow State 
University, and is a major specialist in computer science, so based on his expertise 
in that area he argues that a deterministic point of view is not less rationalized than 
a non-deterministic one and obtains remarkable results along this path in this book. 

The book consists of three parts, it includes the necessary information on 
p-adic analysis, automata theory, as well as physical applications. The author
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viii Foreword

managed to obtain a beautiful description of causal functions based on the following 
assumptions. On the one hand, he takes as a basis ’t Hooft’s deterministic approach 
to the concept of causality based on automata theory. On the other hand, he sets 
out the basic principles for describing fundamental laws based on postulates such 
as the observability of only rational numbers, the inability to observe and measure 
distances smaller than Planck distances, as well as the invariance of the laws of 
Nature under change of the number field. On this basis the author was able to obtain 
a complete description of causal functions in terms of special polynomials. There 
is no doubt that the Anashin’s approach will play an important role in the further 
development of the theory. 

This book may be useful to readers interested in the foundations of quantum 
theory, computer science, p-adic analysis, and their applications. 

Moscow Igor Volovich 
June, 2024 



Preface 

This book is about causality, yet not of causality as a philosophy concept but 
rather of causality as a mathematical notion. That is, the main content of the book 
is mathematical theory of causal functions over discrete time. The mathematical 
theory is not a pure mathematical one: It is motivated by applied problems, and a 
number of mathematical results that are obtained within this theory already have 
(or may have in future) applications within other mathematical disciplines like 
automata theory and combinatorics as well as outside mathematics, namely, in 
applied computer science and maybe (or so I hope) in physics. 

By this reason, the book is divided into three parts: The main content of Parts I 
and II is the said mathematical theory (which basically is the theory of p-adic 
1-Lipschitz functions); Part III is devoted to applications of this theory. Though 
certain mathematical maturity of the readers is mandatory (MS degree in Mathe-
matics, or in Computer Science, or in Physics is desirable), the readers who are 
interested mostly in applications may use Part II for references only and do not read 
proofs; however, for these readers it is necessary at least to look through Part I to get 
acquainted with basics of p-adic theory which is used throughout the book. Chapter 
1 which belongs to neither of Parts I–III contains a variety of mathematical notions 
and facts which are used in the book; this chapter is mostly a collection of reminders 
to ease referencing. The most important of these reminders, the rigorous definition 
of causal function over discrete time, is given in this chapter, in Sect. 1.6.2. 

Causal function is the main object examined in the book; the latter function 
may be thought of as a black box which accepts “causes” and produces “effects.” 
The causes/effects are sequences of “elementary causes/effects” which follow one 
by one, each elementary cause/effect in each instant of time. Therefore, time 
is assumed to be discrete, and at each discrete instant of time only one of all 
elementary causes/effects is accepted/produced by the black box. The total number 
of elementary causes/effects is assumed to be finite; this finiteness assumption is 
assumed since no physical objects the total number of whose is infinite are known: 
Even the number of all elementary particles in our Universe is finite. 

When the black box accepts an elementary cause, the box produces an elementary 
effect; but if the next elementary cause is the same as the previous one, the next
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elementary effect may be different from the one which was produced just before. 
This means that when the black box accepts elementary cause, something is changed 
inside the box; therefore, the elementary effects that produces the black box depend 
not only on elementary causes the box accepts but also on this “something” which 
is constantly changing inside the black box in dependence on elementary causes 
the black box accepts. These “something(s)” are called “states” of the black box. 
The states are epistemic; i.e., nobody can observe them directly: An observer 
may only make guesses about the states observing sequences of elementary causes 
and respective elementary effects. The guesses show that generally the next state 
depends not only on the elementary cause the black box accepted but also on the 
state the black box was just before, at the previous time instant. For mathematicians 
and computer scientists it should be clear now that the black box is sequential 
machine,  a  letter-to-letter transducer,  a  synchronous automaton: All these terms 
mean the same thing that is also known as Mealy sequential machine or Moore 
sequential machine. Yes, this is true, but with an adjustment that the total number 
of states (whatever could these be) of a black box need not be a finite. This does 
not contradict the finiteness assumptions since the “states” are epistemic, and not 
ontic, so one may think of infinity and use infinity in calculations despite no infinity 
exists in physical world: Infinity is a mathematical concept, not a physical entity; but 
the concept has proven useful over the centuries because it allows us to estimate the 
values of quantities that depend on variables that are too small or too large compared 
to others (i.e., when the values of these variables “tend to their limits”).

A physicist may think of the black box as a model of open physical system, 
but with a caution: The physicist should not assume that the whole long strings 
of elementary causes and elementary effects, i.e., causes and effects as a whole, 
are completely observable. Very rarely causes and effects are the things that 
are available to observations with no “distortion.” To put it in other words, the 
observables are just approximations of the causes and effects. 

The question that should be asked immediately after the word “approximation” 
is that: With respect to what metric the approximation is? It is necessary to state 
rigorously which causes/effects are close to one another and which are far. This 
metric is defined in the book; actually three different metrics are defined. 

1. The first one of the three metrics is standard real Archimedean metric which can 
be defined for the causes/effects as follows: Let there are only p > 1. elementary 
causes and elementary effects enumerated by {0, 1, . . . , p − 1}.; then, under the 
finiteness assumption, the causes/effects may be thought of as strings of some 
length 𝓁.. To each string α𝓁−1α𝓁−2 . . . α0 ., where indices stand for time instances 
the elementary cause/effect happens, put into the correspondence the number 
0.α𝓁−1α𝓁−2 . . . α0 = α𝓁−1p

−1+α𝓁−2p
−2+· · · α0p

−𝓁
. from the unit real segment 

[0, 1].. That is, the most significant digits of the base-p expansion of these 
numbers correspond to elementary causes/effects which happen later: The more 
significant is the digit in the base-p expansion of the number which corresponds 
to cause/effect, the later respective elementary cause/effect happen. The distance 
between the causes/effects is, by the definition, the ordinary distance between
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real numbers a, b ∈ [0, 1]., the real absolute |a − b|.. That is, the metric 
characterizes temporal evolution of the system represented by the black box: 
Elementary causes/effects that happen later are more significant than the ones 
that have happened earlier; but the earlier ones may have a crucial influence on 
future behavior of the system since each of these early elementary causes/effects 
change current states of the system and thus may lead to a sort of “dead butterfly 
effect” from R. Bradbury’s science fiction short story The Sound of Thunder. 

2. The second metric is defined similarly, but the digits of the numbers are taken in 
the opposite order compared to the first metric: To the sequence α𝓁−1α𝓁−2 . . . α0 . 

there corresponds the number 0.α0α1 . . . α𝓁−1 = α0p
−1+α1p

−2+· · · α𝓁−1p
−𝓁

., 
i.e., the earlier the elementary cause/effect happens, the more significant the 
corresponding digit is. The metric in this case is again the metric on reals; this 
metric which reveals the “immediate response” of the system since the later the 
elementary causes happen, the less significant is the total effect; only the earliest 
elementary causes matter. 

Metrics 1–2 have some deficiencies: The first metric can be well-defined for 
finite sequences of elementary causes/effects only; therefore, it is not suitable for 
“predictions” of future behavior of the system or to “reveal the history” of the 
system. Though the second metric can be defined for infinite sequences of ele-
mentary causes/effects, for a pair of different causes/effects there may correspond 
one real number, and there are infinitely many such pairs of causes/effects. The 
second metric is therefore a pseudo-metric; moreover, it is “incapable to predict 
the future,” e.g., to predict results of experiments. 

3. To avoid these deficiencies, a yet one more metric is needed further; actually 
this metric is the main metric that is used throughout the book. The metric is a 
natural metric on one-side infinite sequences: Given two left-infinite sequences 
a = · · · α3α2α1α0 . and a' = · · · α'

3α
'
2α

'
1α

'
0 . over {0, 1, . . . , p − 1}., put dp(a, a') =

p−n
., where n = max{k : αk = α'

k}. if that n exists, otherwise put dp(a, a') = 0. 
if αi = α'

i . for all k = 0, 1, 2 . . ... This metric is a metric rather than a pseudo-
metric: dp(a, a') = 0. if and only if a = a'

.. Moreover, the metric dp . is capable 
“to predict the future and to reveal the past” since to every black box B. there 
corresponds a unique well-defined map fB . of “causes” to “effects” which is 
continuous with respect to this metric since dp(fB(a), fB(a'))   ≤ dp(a, a').. The 
metric dp . is an ultrametric, the non-Archimedean metric which satisfies strong 
triangle inequality dp(a, c)   ≤ max{dp(a,b), dp(b, c)}.; therefore, the mapping 
fB . is 1-Lipschitz with respect to the metric dp ., i.e., satisfies Lipschitz condition 
with the constant 1. The most important is that, given any 1-Lipschitz map f of 
“causes” to “effects” there exists a “black box” B., the sequential machine, such 
that f = fB .. This fact immediately gives a possibility to examine mappings 
of “causes” to “effects” that the black box (which a model of open system) 
performs, in order to understand and predict behavior of the system rather than 
trying unsuccessfully to “open the box in order to look what is inside the box.” 
Facilities for that examination do exist: These are p-adic analysis and p-adic 
dynamics.
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By this reason, the claim that causality is essentially non-Archimedean might be 
taken as a motto of the book, but not as a motto only: The non-Archimedean 
approach to causality results in a sort of a toolbox full of mathematical tools 
which can be (and some already are) effectively used in concrete applied areas 
like the design of pseudo-random number generators (see Chap. 14) for computer 
simulations, data protection, etc.; experiment design (see Chap. 15); control of 
automata behavior, design of automata having prescribed properties, smart contracts 
design (see Chap. 13); straight-line computer programs (SLP) design (see Sect. 9.5). 
The underlying reason why the “non-Archimedean tools” may work (and already are 
working) in the said applied areas is that main computer instructions, both arith-
metical (addition and multiplication of integers) and bitwise logical (like bitwise 
negation NOT ., bitwise logical conjunction AND ., bitwise logical disjunction OR ., 
etc.) as well as their compositions, are continuous with respect to non-Archimedean 
2-adic metric. 

Another aspect of the non-Archimedean view at causality, the dominating view in 
the book, is related to contemporary superdeterministic interpretations of quantum 
mechanics, see Chap. 16. The reader should be warned that the author of this book 
is a mathematician rather than a physicist and therefore does not feel himself 
confident enough to develop a yet one more interpretation of quantum mechanics; 
but nonetheless the author takes the liberty to use the non-Archimedean approach to 
some fundamental questions of quantum theory in order to shed some mathematical 
light onto these questions. These fundamental questions are: Whether Nature on 
the smallest of the scales is “discrete” or “continuous”? Whether randomness is 
intrinsic property of Nature at the smallest of scales, or maybe Nature is strictly 
deterministic? And what is “free will” in case strict determinism rather than ran-
domness is immanent? The answers are given in the form of interpretations rather 
than mathematical theorems; but all the interpretations are based on mathematical 
assertions which are rigorously proved in the book. 

As a whole, these interpretations (supported by mathematical assertions) consti-
tute an evidence for the claim that superdeterministic models of quantum mechanics 
may have same predictability power as “classical” models. The very appearance of 
superdeterministic models of quantum mechanics is in some sense inevitable in view 
of model-dependent realism concept (the term was coined by Stephen Hawking and 
Leonard Mlodinow in their 2010 book, The Grand Design). However, this is not 
the only reason why the author touches the questions related to very foundations 
of quantum mechanics: The questions of that kind inevitably arise in connection 
with concrete applications like semiconductor devices based on quantum processes 
that are assumed to be “chaotic.” The devices are claimed to produce sequences 
of “true random” numbers or perform “true random transformations” of bitwords; 
these devices are aimed to be used in industry as parts of sensitive appliances where
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the randomness is a must. These practical questions are also mentioned (though 
briefly) in Chap. 16. 

Moscow, Russia Vladimir Anashin 
May, 2024 
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