

Jitka Klimešová

Plant Bodies

How Plant Structures Contribute
to Our Comprehension
of Their Life-History Strategy

Springer

Plant Bodies

Jitka Klimešová

Plant Bodies

How Plant Structures Contribute to Our
Comprehension of Their Life-History
Strategy

Springer

Jitka Klimešová
Institute of Botany
Czech Academy of Sciences
Průhonice, Czech Republic

ISBN 978-3-031-92191-9 ISBN 978-3-031-92192-6 (eBook)
<https://doi.org/10.1007/978-3-031-92192-6>

Translated from Czech

The original submitted manuscript has been translated into English. The translation was done using artificial intelligence. A subsequent revision was performed by the author(s) to further refine the work and to ensure that the translation is appropriate concerning content and scientific correctness. It may, however, read stylistically different from a conventional translation.

Translation from the Czech language edition: "Těla rostlin. Jak nám tvar rostlin pomáhá v poznání jejich životní strategie" by Jitka Klimešová, © Autorský kolektiv Botanického ústavu AV ČR, v.v.i., 2022. Published by Academia. All Rights Reserved.

© Institute of Botany, Czech Academy of Sciences 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

*I would like to dedicate this book to my
father and first teacher of botany,
Vojtěch Piňos.*

Foreword

Wrapping your mind around the dizzying diversity of plant architecture and growth forms can be a daunting task. At first glance, it seems like a straightforward exercise of simply categorizing species into distinct groups such as trees, shrubs, and herbs. But what about cacti and aquatic plants, how are they to be classified? Many species seem to break the rules. When you commit to deeply exploring this wonderful world of botany in detail, the number of rule breakers appear to multiply exponentially. Because of this, plant growth form classification schemes blossomed into a cottage industry with little consensus, and the secret to understanding the evolutionary basis of plant architecture remained shrouded in mystery. Solving this mystery is the basis of this book.

The author, Jitka Klimešová, learned right away that the mystery could not be solved by simply looking up taxonomic descriptions of species. Such descriptions were not just incomplete, they were contradictory. Even basic theories for explaining the origin of different plant organs had not been fully resolved. Just when we thought that leaves, stems, and roots were distinct organs, botanists discovered too many mischievous species that blended their organs into continuous features. As is often true in dynamic fields of science, our original ideas did not survive scrutiny. Many botanists around the world have worked hard to propose generalizable frameworks to make sense of the diversity of plant forms. Many of these pioneering scientists are characters in this story and are memorialized artistically by the author.

Students of botany have lacked a standard reference to start their journey toward understanding the architecture of plants. Thankfully, Jitka Klimešová has synthesized this scattered literature into a framework that can be used by botanists around the world. Importantly, she moves the discussion from descriptive observations toward an enterprise to understand how this diversity of morphology drives variation in function. This book marks the beginning of an important field of research she calls functional morphology, with a call to go belowground and integrate what we have learned aboveground into a comprehensive understanding of the whole plant body.

Department of Botany
University of Wyoming,
Laramie, WY, USA
27th April 2025

Daniel C. Laughlin

Preface

When I delved into my self-study of plant morphology, it was with a clear goal to accurately describe the diversity of clonal growth organs among plants of Central Europe. Initially, I imagined that I would simply find descriptions of clonal growth organs for individual species in books and list them in a table. Based on the data from the table, I wanted to calculate the types of morphological categories and the number of species in them. I went through a lot of literature published from the mid-nineteenth century to the present, written in several languages. I started with a Russian-written ecological flora of the Moscow region, then I moved on to English and German literature. The first problem was that species for which I found multiple descriptions often had different descriptions in each source, and the second was that the number of categories was enormous. There are many classifications of morphological categories, and authors apply them more or less carefully to describe species. To cope with these problems, I started collecting plants and tried to understand their morphology on my own. For this purpose, I began drawing plants, especially their belowground organs, which I aimed to understand. Drawing became my passion. I spent every free moment digging up and drawing plants. I was on maternity leave at the time, so in the morning, during walks with the children, I collected plants, and when they napped after lunch, I drew them.

When I returned from maternity leave, I had collected material for our entire flora. In 2003, we were invited with colleagues to participate in building a European database of plant functional traits. Within this project, I collected more data, clarified how to define the traits I wanted to describe on plants, and filled the CLO-PLA database, which is freely accessible on the internet. My interest in plant shapes could have ended there, but I gradually began to realize how little knowledge of plant morphology there is among ecologists and how this lack of knowledge is limiting their ability to understand various problems in plant ecology. This led me to start a course on Plant Architecture. However, only a few students take such a course, and I was not satisfied with that. With colleagues, we established an international week-long course for young scientists, but even that is not enough. I decided to write my course as a book, which I hope will be read not only by students but also by researchers who deal with plant ecology. Hopefully, this book will help them better understand plant shapes, and the dependent ecological functions, and will inspire them in their own research.

Acknowledgments

The book would never have been created without joint projects and fruitful discussions with many students and colleagues. My thanks go especially to Alena Bartušková, Jiří Doležal, Arinawa Filartiga, Zdeněk Janovský, Vít Latzel, Jana Martíneková, Gianluigi Ottaviani, and Curtis Lubbe. For reading previous versions of the manuscript and providing constructive comments and suggestions, I thank Tomáš Herben, Adam Klimeš, Zdeňka Lososová, Silvia Pecháčková, and Curtis Lubbe (reading English version). For the illustrations and photographs, I thank Alena Bartušková.

I am indebted to Zuzana de Ruiter for help with English edition of the book.

The book could not have been created without the support of grant agencies for the work of our research group. I thank the Grant Agency of the Czech Republic (19-13103S, 19-13231S), the INTER-TRANSFER Program, Ministry of Education, Youth and Sports (LTT20003), Praemium Academiae award and the long-term development project of the Academy of Sciences of the Czech Republic [No. RVO 67985939], and the Institute of Botany of the Czech Academy of Sciences.

Competing Interests The author has no competing interests to declare that are relevant to the content of this manuscript.

Introduction

Ecologists have a hard time dealing with plants and must be very inventive in their research. Everything in the plant kingdom takes a long time and is often hidden belowground. With plants, we cannot compare strategies by describing what prey they hunt or how much time they spend on various daily activities; we often help ourselves by attributing functions to plant shapes. Surely you agree that a tree, shrub, or herb have different life strategies, or that a leaf, stem, and root have different functions. But what about different types of stem branching? Does it also have any ecological significance?

I want to introduce you to the shape of plants and its significance for plant ecology here, with an emphasis on seed plants and their vegetative organs (flowers, fruits, and seeds will only rarely be mentioned). In the first part, I will focus on the overall appearance of the plant: the growth form. In the second part, I will focus on comparative morphology, that is, on the basic organs, such as the root, stem, and leaf, and their transformations and functions. In the third part, I will discuss recurring motifs in the structure of the plant body: buds, twigs, and shoots, that is, the architecture of the plant. The aim of all this is to show what we already know about the relationship between form and function, to reveal what we do not know, and to suggest how we might further use information about the shape of the plant body in ecology.

The chosen approach has its advantages and disadvantages. As an advantage, I can present ecological questions from an unusual angle, to show connections that remain hidden if you do not know how the plant body is constructed. The disadvantage of this approach is that some topics—ecological functions such as regeneration after disturbance or clonal growth—will be discussed repeatedly. For example, I will mention the reaction of plants to disturbance in my discussion of growth forms because their definition is partly based on how plants react to disturbance. I will return to this topic in the chapter on morphology, because some belowground plant organs serve for regeneration after plant injury. Finally, I will mention disturbance in the chapter on architecture because the supply of buds from which the plant regenerates is largely determined by its architecture. I believe that these repeated returns to a certain topic will help present the ecological function each time in a new light and will not be too disruptive.

The path to understanding plant shapes and their function relates to the turning points in the lives of researchers, and these are often influenced by historical events. Therefore, I have taken the liberty to supplement the text with brief profiles and illustrations about the lives of some researchers who have studied the shapes of the plant body.

Contents

1	Growth Forms of Plants	1
1.1	How Do We Perceive the Plant as a Whole?	1
1.1.1	Basic Growth Forms	1
1.1.2	What Do We Know About Evolution?	3
1.1.3	Overall Appearance of the Plant	4
1.1.4	Ecological Significance	6
1.1.5	Are We Waiting for the Ideal Classification?	9
1.1.6	Tests of Functioning	11
	References	13
2	Comparative Morphology	15
2.1	From Which Parts?	15
2.1.1	Basic Vegetative Organs	15
2.1.2	What Do We Know About Evolution?	20
2.1.3	Classical and Continuous Model	20
2.1.4	Archetypal Plant	22
2.1.5	Metamorphoses	23
2.2	What Is the Function of Basic Organs?	27
2.2.1	Functions and Strategies	27
2.2.2	Easily Measurable Traits	31
2.2.3	Where Are We Now?	34
2.2.4	Those Roots Again!	36
2.3	Specialized Belowground Organs	38
2.3.1	Rhizomes, Bulbs, and Tuber	38
2.3.2	What Do We Know About Evolution?	42
2.3.3	Storage Function	44
2.3.4	Regenerative Function	44
2.3.5	Clonal Growth	47
	References	49
3	Plant Architecture	53
3.1	Growth Apex	53
3.1.1	Modular Structure	53
3.1.2	Fountain of Youth	55

3.1.3	Corner's Rule	55
3.1.4	Spatial Arrangement of Leaves	57
3.1.5	Timing and Speed of Leaf Development	58
3.1.6	Size and Shape of Leaves	61
3.1.7	Plant Size	63
3.2	Architectural Models	65
3.2.1	How It Began	65
3.2.2	Trees	66
3.2.3	Herbs	67
3.2.4	Root Systems	69
3.2.5	What Do We Know About Evolution?	70
3.3	Relationships Between Shoots and Roots	73
3.3.1	Primary and Adventitious Roots and Shoots	73
3.3.2	Synthesis of Architectural Models	76
3.3.3	Architectural Peculiarities	80
3.3.4	Function of Architectural Models	84
3.4	Bud Bank	85
3.4.1	Honeycomb Effect	85
3.4.2	Experimental Testing of Function	90
3.4.3	Bud Bank in Seasonal and Disturbed Communities	94
3.4.4	What Limits Regeneration from the Bud Bank	96
3.5	Clonality	96
3.5.1	Clonal Traits	96
3.5.2	Functions of Clonal Traits	98
3.5.3	Phalanx and Guerrilla	101
3.5.4	Integrators and Splitters	103
3.6	The Plant as a Population of Shoots	105
3.6.1	What Is an Individual?	105
3.6.2	Age and Size	106
3.6.3	Small and Large Life Cycle of Perennial Plants	107
3.6.4	Population Dynamics	111
	References	111
	Conclusion	117
	Boxes	119
	References	155
	Index	157