

Nutrition and Health

Series Editors: Adrienne Bendich · Connie W. Bales

Nathan S. Bryan
Joseph Loscalzo *Editors*

Nitrite and Nitrate in Human Health and Disease

Second Edition

 Humana Press

NUTRITION AND HEALTH

Adrienne Bendich, Ph.D., FACN, FASN

Connie W. Bales, Ph.D., R.D., SERIES EDITORS

Nathan S. Bryan • Joseph Loscalzo
Editors

Nitrite and Nitrate in Human Health and Disease

Second Edition

Editors

Nathan S. Bryan
Department of Molecular and Human Genetics
Baylor College of Medicine,
Houston, TX, USA

Joseph Loscalzo
Department of Medicine
Harvard Medical School
Boston, MA, USA

Department of Medicine
Brigham and Women's Hospital
Boston, MA, USA

Nutrition and Health

ISBN 978-3-319-46187-8 ISBN 978-3-319-46189-2 (eBook)
DOI 10.1007/978-3-319-46189-2

Library of Congress Control Number: 2016963148

© Springer International Publishing AG 2016, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Humana Press imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The short-lived, free radical molecule nitric oxide (NO) has emerged as one of the most versatile cell signaling transmitters produced by mammalian biological systems. NO, identified as “endothelium-derived relaxing factor” and proclaimed “Molecule of the Year” in 1992, functions critically in physiology, neuroscience, and immunology. The vascular effects of NO alone include vasodilatation, inhibition of platelet aggregation and leukocyte adhesion to the endothelium, scavenging of superoxide anions, and inhibition of smooth muscle cell hyperplasia. Early studies on NO stemmed from work with nitroglycerin in an attempt to elucidate the mechanism through which it relieved pain due to angina pectoris. It was discovered that the formation of NO from nitroglycerin accounts for its therapeutic efficacy for angina by dilating constricted and diseased blood vessels in the heart. Not surprisingly, some of the most prevalent diseases result, at least in part, from decreased NO availability, for example, hypertension, atherosclerosis, diabetes mellitus, and hypercholesterolemia.

The discovery of the formation of NO from the semi-essential amino acid L-arginine through one of three isoforms of nitric oxide synthase provided a key therapeutic target, which is still the focus of much research today. Dietary supplementation of L-arginine has been shown to enhance NO production in healthy individuals (despite already saturated extracellular concentrations), and this may both provide cardiovascular protective effects and enhance athletic performance. Indeed, endothelial dysfunction, an early sign of cardiovascular disease, has been reversed through enhanced NO production. This observation leads us to believe that intervention through the NO pathway is a viable route for treatment and prevention of vascular dysfunction.

Recently, the oxidative “waste” products of nitric oxide, nitrite and nitrate, have been evaluated in a new context, due to their ability to form NO independent of nitric oxide synthase enzymes, through reductive electron exchanges. Since nitrate (as well as nitrite) is primarily ingested in the form of fruits and vegetables, which have been known for some time to protect against diseases from atherosclerosis to cancer, a new paradigm has emerged regarding the role of these once feared nitrogen oxides. Both public and scientific perception of nitrite and nitrate still revolve around fears of nitrosamine formation and carcinogenesis. What has not been considered, however, is the fact that consumption of antioxidants with nitrite and nitrate (both significant components of fruits and vegetables) inhibits the formation of nitrosamines in the gastric milieu. Furthermore, a human nitrogen cycle consisting of commensal bacteria in the oral cavity, which serve a reductive role in the conversion of approximately 20 % of ingested nitrate to nitrite, now appears to provide a significant NOS-independent source of NO generation.

This body of work may have revolutionary implications in terms of developing strategies to combat heart disease and many other contemporary diseases associated with a NO deficiency. Furthermore we may finally have an explanation for the many known and undisputed benefits of the Mediterranean diet. Perhaps now we should consider nitrite and nitrate as the bioactive food components that account

for the protective benefits of certain foods and diets. Numerous clinical trials of supplementation with various antioxidants borrowed from heart-healthy diets, such as those typical of Mediterranean countries, have consistently failed to replicate the protective effects of the foods themselves. Consistently absent, but the primary human source, is dietary nitrate and nitrite. Recent work has shown various cardioprotective effects from modest supplementation of nitrite and nitrate. Nitrite, in particular, has been shown to prevent hypercholesterolemic microvascular inflammation and protect against injury from ischemic events.

The broader context of research regarding nitrate, nitrite, and nitric oxide suggests these simple nitrogen oxides serve as a critical dietary component for protection against various chronic diseases. Currently, heart disease and cancer lead the nation in cause of deaths. Concurrently, the dietary patterns of the West have transitioned towards heavily processed foods and lack significant quantities of fruits and vegetables. The explanations have been varied but overlook simple molecules known to play critical roles in multiple organ systems through the chemical messenger NO. The dietary contributions to normal NO homeostasis would not only help explain significantly lower rates of cardiovascular disease in those who regularly consume fruits and vegetables but also arm scientists and physicians with a relatively simple and inexpensive therapeutic intervention.

This text effectively overviews the important role nitrite and nitrate play in biological systems and NO homeostasis. A risk benefit analysis has shown nitrite and nitrate present no danger when consumed in modest quantities and preferably with antioxidants. In fact, research appears to suggest nitrite acts as a redundant NO reservoir when NOS activity is insufficient or stress requires a secondary source. The future use of nitrite/nitrate in dietary considerations will likely have a significant impact on current public health policy. This book brings the NO-story full circle and presents novel thought on the future treatment for many of the country's most pressing health issues. This is a relatively new area of nitric oxide research but a very exciting one. The L-arginine pathway for NO synthesis may turn out to be only part of the story. The symbiosis between humans and the bacteria that reside in and on our body may be just as important in terms of utilizing nitrate and nitrite to make NO under conditions when the oxidation of L-arginine is dysfunctional. Drs. Nathan S. Bryan and Joseph Loscalzo have assembled the world's experts to present a first of its kind, comprehensive work on nitrite and nitrate in human health and disease, carefully examining the context for a risk benefit assessment.

Louis J. Ignarro

Contents

Part I Biochemistry, Molecular Biology, Metabolism and Physiology

1	Introduction	3
	Nathan S. Bryan and Joseph Loscalzo	
2	From Atmospheric Nitrogen to Bioactive Nitrogen Oxides	11
	Mark Gilchrist and Nigel Benjamin	
3	Nitrate-Reducing Oral Bacteria: Linking Oral and Systemic Health	21
	Nathan S. Bryan and Joseph F. Petrosino	
4	Epigenetics and the Regulation of Nitric Oxide	33
	Diane E. Handy and Joseph Loscalzo	
5	The Mitochondrion: A Physiological Target of Nitrite	53
	Danielle A. Guimaraes, Chris Reyes, and Sruti Shiva	
6	Sources of Exposure to Nitrogen Oxides	69
	Andrew L. Milkowski	

Part II Food and Environmental Exposures to Nitrite and Nitrate

7	History of Nitrite and Nitrate in Food	85
	Jimmy T. Keeton	
8	Nutritional Epidemiology of Nitrogen Oxides: What do the Numbers Mean?	99
	Martin Lajous and Walter C. Willett	
9	Nutritional Impact on the Nitric Oxide Pathway	111
	Wing Tak Wong and John P. Cooke	
10	Dietary Flavonoids as Modulators of NO Bioavailability in Acute and Chronic Cardiovascular Diseases	129
	Matthias Totzeck and Tienush Rassaf	
11	Nitrite and Nitrate in Human Breast Milk: Implications for Development	141
	Pamela D. Berens and Nathan S. Bryan	

12 Regulation of Dietary Nitrate and Nitrite: Balancing Essential Physiological Roles with Potential Health Risks.....	153
Norman G. Hord and Melissa N. Conley	
Part III Nitrite and Nitrate in Therapeutics and Disease	
13 Nitric Oxide Signaling in Health and Disease	165
Nathan S. Bryan and Jack R. Lancaster Jr.	
14 Inhaled Nitric Oxide	179
Kenneth D. Bloch, Andrea U. Steinbicker, Lisa Lohmeyer, and Rajeev Malhotra	
15 Pharmacology of Nitrovasodilators.....	195
Thomas Münzel and Andreas Daiber	
16 Nitrite and Nitrate in Ischemia–Reperfusion Injury.....	217
David J. Lefer, Nathan S. Bryan, and Chelsea L. Organ	
17 Nitrite and Nitrate as a Treatment for Hypertension	235
Vikas Kapil	
18 Nitrate and Nitrite in Aging and Age-Related Disease.....	259
Lawrence C. Johnson, Allison E. DeVan, Jamie N. Justice, and Douglas R. Seals	
19 The Nitrate–Nitrite–Nitric Oxide Pathway in Traditional Herbal Medicine and Dietary Supplements with Potential Benefits for Cardiovascular Diseases	279
Yong-Jian Geng	
20 Nitrate in Exercise Performance.....	293
Stephen J. Bailey, Anni Vanhatalo, and Andrew M. Jones	
21 Nitrite and Nitrate in Cancer.....	311
David M. Klurfield	
22 Looking Forward	325
Nathan S. Bryan and Joseph Loscalzo	
Index.....	337