Contents

Contributors	X
Foreword	xi
Preface	xiii
Acknowledgements	XV
Abstract	xvii
1 General Introduction M.J. Kropff	1
Competition: a key process in (agro-)ecology	1
Competition and weed management	2
Methods to quantify plant competition	4
Toward a mechanistic understanding	5
Overview	6
2 Empirical Models for Crop-Weed Competition M.J. Kropff and L.A.P. Lotz	9
Introduction	9
Competition in monocultures	9
Hyperbolic functions for competition in mixtures	11
The relative leaf area approach	16
The hyperbolic relative leaf area - yield loss equation	16
Time dependence of relative damage coefficient q	18
Evaluation of the relative leaf area approach	20
Evaluation of the model for multi-species competition	23
Conclusions	23
B Eco-Physiological Models for Crop-Weed Competition	25
M.J. Kropff	25
Introduction	
An approach to crop simulation modelling	26
The model INTERCOM for interplant competition	29

	Objectives	29
	Approach and structure	29
	Model structure	30
4	Mechanisms of Competition for Light	33
	M.J. Kropff	
-	troduction	33
	odelling competition for light	35
C	O ₂ assimilation of species in a mixed canopy	36
	Radiation fluxes above the canopy	36
	Light profile within the mixed canopy	38
	CO ₂ assimilation rates of single leaves	43
	Instantaneous canopy CO2 assimilation rates of the species	44
	The daily total canopy CO2 assimilation rate of the species	46
	Light absorption and CO ₂ assimilation by stems and	1.
	reproductive organs	48
	Application of the mixed canopy model	49
M	aintenance and growth respiration	49
	Maintenance respiration	50
	Growth respiration	52
Da	aily growth rate from CO ₂ assimilation and respiration rate simple procedure for simulation of dry matter growth rates in	52
A		52
D.	mixed canopies nenological development	54
		56
	y matter partitioning	56
Re	edistribution of dry matter	57
M	orphological development: leaf area dynamics	59
	orphological development: height growth	60
Su	immary and discussion	00
5	Mechanisms of Competition for Water	63
_	M.J. Kropff	63
	troduction and overview of processes involved	
	il water balance	65
Po	tential evapotranspiration	67
	Net radiation	68
	Reference evapotranspiration	69
So	il evaporation	71
Tra	anspiration of a mixed canopy	72
	Potential transpiration	72
	Actual transpiration	74
Eff	fects of water shortage on growth processes	74
	scussion	75

	Contents	vii
6	Mechanisms of Competition for Nitrogen M.J. Kropff	77
Ini	roduction	77
	ailable soil nitrogen	78
	trogen uptake	79
	owth reduction	79
	eximum, critical and minimum nutrient contents	80
	mpetition for nutrients	81
7	Eco-Physiological Characterization of the Species M.J. Kropff and L.A.P. Lotz	83
	roduction	83
	tht profile in the canopy	83
	2 assimilation-light response of individual leaves	85
	nintenance respiration	88
	owth respiration	89
	erage light use efficiency	89
	enology	93
	y matter partitioning	94
	af area	98 101
	lative death rate of the leaves	101
	ant height	102
	ant-water relationships	103
Dis	scussion and conclusions	104
8	Understanding Crop-Weed Interaction in Field	105
	Situations M.J. Kropff, S.E. Weaver, L.A.P. Lotz, J.L. Lindquist,	100
	W. Joenje, B.J. Schnieders, N.C. van Keulen, T.R. Migo and F.F. Fajardo	
Int	croduction	105
Hi	story of the development and evaluation of the model	
	INTERCOM	106
Ca	se study 1: Rice and <i>E. crus-galli</i>	109
	se study 2: Sugar beet and <i>C. album</i>	113
	Experimental set-up and results	115
	Simulation analysis of sugar beet - C. album competition	118
Ot	her case studies	125
	Maize and E. crus-galli	125
	Tomatoes and Solanum spp.	126
	Wheat and a mixture of weeds	127
Ec	o-physiological analysis of crop-weed competition for light,	
	water and nitrogen in field situations	128
Di	scussion and conclusions	133

9 The Impact of Environmental and Genetic Factors M.J. Kropff, N.C. van Keulen, H.H. van Laar and B.J. Schnieders	137
Introduction	137
Plant density and the period between crop and weed emergence	
Climatic factors	142
Morphological and physiological species characteristics	144
10 Practical Applications	149
M.J. Kropff, L.A.P. Lotz and S.E. Weaver	
Introduction	149
Predicting yield loss	150
Development of simple predictive tools	150
Impact of (bio) herbicides on damage relationships	154
Spatial weed distribution	155
Predicting yield loss in future crops	156
The critical period for weed control	158
Perspectives for breeding of competitive cultivars	162
Improving weed management	164
Discussion and conclusions	166
References	169
Appendices	187
A1 The FORTRAN Simulation Environment	187
D.W.G. van Kraalingen	
Introduction	187
Integration and time loop	187
Initialization of the states and parameters from external	
data files	190
The input data files: reading data	190
The TIMER.DAT file	191
The RERUNS.DAT file	194
The PLANT.DAT and SOIL.DAT files	195
Weather data	196
Implementing reruns	198
Output of simulation results	199
Operation of the model	200
Errors and warnings from the FSE program	200
A2 Program structure of the model INTERCOM M.J. Kropff, D.W.G. van Kraalingen and H.H. van La	201
Introduction	201

Contents	
Convents	

ix

Dat	a files needed to operate the model INTERCOM	203
Lis	tings of the model INTERCOM, subroutines and plant data	205
	Main program and subroutine PLANTC	205
	Subroutine ASTRO	224
	Subroutine ASSIMC	225
	Subroutine DEVAP	230
	Subroutine LEAFPA	231
	Subroutine LEAFRE	232
	Subroutine PENMAN	233
	Subroutine RADIAT	235
	Subroutine TOTASS	237
	Subroutine TOTRAN	240
	Subroutine WBAL	242
	Plant data set for sugar beet (SUGARB.DAT)	245
	Plant data set for C. album (CHENO.DAT)	246
A3	Definition of the Abbreviations Used in the Model	
	INTERCOM	247
A4	List of Symbols Used in Equations	263
Inc	lex	271