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Abstract
Entamoeba suis and E. polecki subtype (ST) 1 and ST3 recently have been inferred to be virulent in pigs. However, because
relevant molecular epidemiological surveys have been limited, the prevalences of these species remain unknown and their
pathogenicities are still controversial. We surveyed 196 fecal samples of pigs (118 of adults, 78 of piglets) at Tangerang in
West Java, Indonesia, in 2017, employing PCR using porcine Entamoeba-specific primers. E. suis was the more frequently
detected species, observed in 81.1% of samples, while E. polecki ST1 and ST3 were detected in 18.4% and 17.3% of samples,
respectively; mixed infections (harboring 2–3 species or subtypes of Entamoeba) were confirmed in 29.3% of positive samples.
Statistically significant differences in the positive rates were not seen between adult pigs and piglets, except for those ofE. polecki
ST3. The prevalences of Eimeria spp. and/or Cystoisospora suis (79.1%), strongyles (55.6%), and Strongyloides spp. (6.1%)
were also observed morphologically in the samples. Further chronological or seasonal investigations of pigs and humans in these
high-prevalence areas are needed to assess the virulence of the Entamoeba parasites, including the effects on pig productivity, and
to evaluate the zoonotic impacts of these organisms.
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Introduction

Parasites of the genus Entamoeba are known to infect members of
every vertebrate class (Neal 1966; Stensvold et al. 2011). Most
species of the genus typically exist in two morphological forms,
trophozoites or cysts. Trophozoites serve as an active and prolifera-
tive stage in the hosts. On the other hand, cysts, a spore-like stage
that can survive in the environment after being shed in feces, serve
as sources of oral infection of new hosts. Classically, species within

the genus havebeen classified basedonderivedhosts,morphologies
(including sizes of the parasites), non-cyst or cyst formation, and the
number of nuclei present in the mature cyst (one, four, or eight)
(Levine 1973). More recently, however, molecular analyses have
been used to distinguish species and genotypes, given how difficult
it can be to distinguish among species (especially genotypes) due to
their morphological similarities.

Among the genus, only two species, E. histolytica (and E.
moshkovskii in some reports) in humans and E. invadens in
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reptiles possess invasive characteristics and cause fatal diseases;
other species of the genus are considered non-pathogenic (Clark
1995; Fotedar et al. 2007; Shimokawa et al. 2012; Kyany’a et al.
2019). However, two porcine Entamoeba spp., E. suis and E.
polecki, recently have been implicated in causing severe lesions
associated with enteritis. Hemorrhagic colitis resulting from E.
suis invasion of the lamina propria (Matsubayashi et al. 2014)
and proliferative enteritis induced by E. polecki (associated with
lethal lesions when combined with Lawsonia intracellularis or
Salmonella enterica serovar Typhimurium) have been reported
in Japan (Matsubayashi et al. 2015a, 2015b, 2016; Hirashima
et al. 2017; Ito et al. 2020). Although E. suis predominantly
infects pigs, E. polecki has been detected in multiple hosts in
addition to pigs. Four genetic subtypes (ST1–4) of E. polecki
have been defined based on the sequences of the small-subunit
ribosomal RNA (SSU rRNA) genes (Stensvold et al. 2011). ST1
is found in pigs and humans; ST3 is detected in pigs, humans,
and birds; and ST2 and ST4 infect humans and primates
(Stensvold et al. 2018). Additionally, the susceptibility of pigs
to E. histolytica has been demonstrated only by experimental
infection of a miniature pig experimental model (He et al. 2012).

Additional studies for the detection and surveillance of
porcine Entamoeba spp. have been conducted in several coun-
tries other than Japan. In Spain, coinfection by E. polecki
(unknown subtype) and Brachyspira hyodysenteriae was re-
ported to cause severe necrotizing lesions in pig (Cuvertoret-
Sanz et al. 2019). Surveillances of E. polecki ST1 and ST3, in
addition to E. suis, were performed using more than 500 fecal
samples in China (Li et al. 2018; Ji et al. 2019), and parasites
were detected in collections of fecal specimens (ranging in
size from a few to around 10 samples each) obtained in some
countries, e.g., Indonesia, Sweden, the UK, and Germany
(Tuda et al. 2016; Stensvold et al. 2018; Wylezich et al.
2019). However, the pathogenicity or prevalence of
Entamoeba infections in pig cannot be elucidated given the
limited amount of data provided in those papers. Here, we
examined pig feces samples collected in Indonesia, a country
in which the prevalence ofEntamoeba spp. remains unknown.
Specifically, we sought to clarify the frequency of infection
with Entamoeba spp. and assess the zoonotic potential of
these isolates.

Materials and methods

Collections of fecal samples

A total of 196 porcine fecal samples were collected from 118
adults and 78 piglets. These specimens were collected at
Tangerang in West Java, Indonesia, in February 2017.
Tangerang is one of the cities in Banten Province, which is
located around 30 km from Jakarta (the capital city of
Indonesia) (Fig. 1). Geographically, this city is 0–25 m above

sea level, the annual temperature is 23–34 °C with a relative
humidity of 80.0%, and the average annual rainfall is around
154.9 mm. The examined pigs were located on 29 farms in 7
villages in 5 districts. Aside from exhibiting, in some in-
stances, slowed growth, these animals showed no apparent
clinical symptoms at the time the feces were collected
(Table 1 and Fig. 1) and the animals were not treated with
any anthelmintic. Most of the farms in the present study tra-
ditionally reared about a few to 10 adult pigs including mother
pigs and piglets (a total of approximately less than 100 pigs).
The pig pens were constructed using bricks or bamboo fences
and were located in the backyard of or next to the houses of
those rearing the animals. The floors were mainly concrete,
but pens on a few farms had dirt floors. Fresh feces, which
were collected within a few hours after being shed, were
placed in individual plastic bags and stored at 4 °C until used
in the laboratory as described below.

DNA purification and molecular identification of
Entamoeba spp.

For DNA extractions of Entamoeba spp., individual fecal
aliquots (200 mg each) were mixed with 0.5–0.7 mL of
DNAzol® (Molecular Research Center, OH, USA).
Samples then were processed according to the DNAzol
manufacturer’s instructions, except that after being diluted
with this reagent, samples were subjected to 3 freeze-thaw
cycles to disrupt the cysts. Using the resulting extracted
DNA as templates, PCR reactions were performed with the
following primer pairs targeting the SSU rRNA gene for
species and subtype identifications: 764-RD3 and 764-765
were employed for nested PCR reactions that yielded an
approximately 320-bp fragment specific to E. suis (Clark
et al. 2006); Epolec F6-Epolec R6 were used to generate
an approximately 430-bp fragment diagnostic of E. polecki
(Matsubayashi et al. 2015b); Epolecki 1-Epolecki 2 were
used to amplify an approximately 200-bp fragment indic-
ative of E. polecki ST1 (Verweij et al. 2001); EpST3 F1-
R2 were employed to generate a 190-bp fragment specific
for E. polecki ST3 (Hirashima et al. 2017). Additionally,
primers EhL-EhR and EdL-EdR (from multiplex primer
s e t s t a r g e t i n g En t amoeba SSU rRNA gene s )
(Evangelopoulos et al. 2000) were used to screen for E.
histolytica in a few extracted samples from each farm.
Amplicons were separated by electrophoresis on 1.5%
agarose gels, stained with ethidium bromide, and visual-
ized using a UV transilluminator. PCR products of reac-
tions using primers 764-765 (for a total of 67 extracted
samples, using 1–3 samples per positive farm (28 positives
of 29 examined farms) because of the large number of E.
suis-positive samples) and Epolec F6-Epolec R6 for se-
quences of E. polecki subtypes (ST1–4) (all of the 56 E.
polecki ST1 and ST3 specific PCR-positive samples (22
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ST1 positives, 20 ST3 positives, and 14 both ST1 and ST3
positives)) were purified using a Gel/PCR™ DNA
Isolation System (Viogene, New Taipei, Taiwan). The pu-
rified fragments were subjected to two-directional DNA
sequencing, and the sequences were aligned and subjected

to homology sea rches as desc r ibed prev ious ly
(Matsubayashi et al. 2014). A phylogenetic tree was con-
structed using the neighbor-joining algorithm with evolu-
tionary distances computed using the Tamura-Nei model
and 1000 bootstrap replicates. The resulting tree was
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Fig. 1 Maps showing the main islands in Indonesia (Java, Sumatra,
Kalimantan, and Sulawesi) (a) and the locations of villages on Banten
that were surveyed (b). The villages from which samples were collected
included Dandang (I) in Cisauk; Cirarab (II) in Legok; MargaMulya (III)

inMauk; Ciakar (IV), Mekar Jaya (V), and Ranca Iyuh (VI) in Panongan;
and Margasari (VII) in Tigaraksa. The numbers in Fig. 1b correspond to
the designation used in Table 1
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drawn using the MEGA software package (version 5;
Tamura et al. 2011).

Screening for gastrointestinal parasites

Separate aliquots of each fecal sample were subjected to a
flotation method using Whitlock universal chambers. The en-
tire field was inspected using light microscopy, and the num-
bers of detected Eimeria and/or Cystoisospora oocysts and
then nematode eggs were quantified (Gordon and Whitlock
1939; Ekawasti et al. 2020).

Statistical analyses

The differences in the prevalence of the parasites between
adult pigs and piglets were evaluated using Fisher’s exact test
(P < 0.05).

Results

We examined a total of 196 pig fecal samples using PCR
reactions targeting porcine Entamoeba spp. The fecal spec-
imens also were inspected for selected gastrointestinal par-
asites using standard flotation methods. Parasites were de-
tected at all of the examined farms; only 3.6% of the ex-
amined pigs were negative for all tested parasites. Among
the organisms for which we screened, E. suis was detected
most frequently (in 81.1% of the animals); E. polecki ST1
and ST3 were detected in 18.4% and 17.3% (respectively)
of the pigs (Table 1). In total, Entamoeba spp. were detect-
ed in 28 of 29 examined farms. The prevalences of
Entamoeba spp. were similar in adult pigs compared with
those in piglets except for those of E. polecki ST3; mixed
infections (consist ing of 2–3 species/subtypes of
Entamoeba per animal) also were detected (Table 2).
PCR analysis demonstrated that none of the examined

samples harbored E. histolytica. Based on the flotation
analysis, coccidian parasites, Eimeria spp., and/or
Cystoisospora suis were detected at high frequency (in
79 .1% of examined p igs ) ; s t rongy les (55 .6%) ,
Strongyloides spp. (6.1%), and a few other parasites (e.g.,
Ascaris suum and Trichuris suis) also were found in the
animals. Although the parasite species could not be defined
completely based solely on morphologies of the detected
oocysts and eggs (e.g., Eimeria spp. and C. suis, stron-
gyles, and Strongyloides spp.), the numbers per gram of
feces were counted successfully. The mean numbers of
the oocysts or eggs per gram of feces for adults and piglets
(respectively) were 3147 (range 77,600 to 40) and 3232
(range 25,280 to 80) for Eimeria spp. and/or C. suis; 716
(range 9800 to 40) and 4522 (range 68,400 to 40) for
strongyles; and 755 (range 3760 to 40) and 1390 (range
3120 to 320) for Strongyloides spp. These results sug-
gested that piglets shed more parasites in feces than did
adult pigs. There were statically significant differences be-
tween adult pigs and piglets (P < 0.05) in the prevalence of
E. polecki ST3 and strongyles.

Sequence analyses of amplicons obtained using the 764-765
or Epolec F6-Epolec R6 primer pairs successfully yielded nu-
cleotide sequences for all of the extracted 67 E. suis–positive
samples, and 14 of 36 E. polecki ST1–positive samples and 16
of 34 E. polecki ST3–positive samples, respectively. All of the
sequences were identical among the E. suis–positive isolates
and among the E. polecki ST3–positive isolates, and all of these
partial sequences were identical to the respective sequences
previously reported for E. suis and E. polecki ST3 (e.g.,
Accession Nos. LC230019 and FR686385, respectively). The
E. polecki ST1 isolates yielded two distinct sequences differing
by three nucleotides. One class of ST1 sequence (designated
ST1-1) was identical to previously published data (e.g.,
Accession No. MK801460), and the other (designated ST1-2)
was identical to that of an Indonesian isolate (Accession No.
LC082305) (Tuda et al. 2016). A phylogenetic tree was con-
structed using the SSU rRNA gene sequences derived in the
present work, in combination with published sequences for the
respective genes from Entamoeba spp. (Fig. 2). The sequences
of E. polecki ST1 and ST3 isolates each formed a clade with
sequences of the respective subtypes, but given their small size
(less than 300 bp), the partial sequences of E. suis could not be
incorporated into this phylogenetic tree.

Discussion

Using PCR with species- and subtype-specific primers, we
surveyed villages in a limited area of Indonesia for porcine
Entamoeba sp. infections. The prevalence of E. suis (81.1%)
was elevated compared with values (13.0% and 0.8%) report-
ed for China; on the other hand, E. polecki ST1 (18.4%) and

Table 2 Summary of the number of detected Entamoeba spp. and
subtypes

Species and subtypes* No. of samples (%)

E. suis 111 (66.5)

E. suis + E. polecki ST1 18 (10.8)

E. suis + E. polecki ST3 17 (10.2)

E. suis + E. polecki ST1 + ST3 13 (7.8)

E. polecki ST1 4 (2.4)

E. polecki ST3 3 (1.8)

E. polecki ST1 + ST3 1 (0.6)

Total 167

*ST, subtype
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ST3 (17.3%) were detected at prevalences that were lower
than those reported for China (38.2% and 45.2% for ST1,
10.0% and 34.1% for ST3) (Li et al. 2018; Ji et al. 2019).
These differences may reflect environmental variations (e.g.,
cysts may survive for longer periods under moister conditions)
or distinctions in farm management (e.g., the cysts may be

more easily transmitted in facilities housing larger populations
of pigs). Thus, further investigations in other countries and in
other areas of Indonesia will be needed to clarify these differ-
ences in prevalence.

Coccidian parasites were detected at a high prevalence
(79.1%) that was similar in magnitude to that of E. suis.

E. polecki (ST1-2 pig) present study

E. polecki (LC082305 pig)

E. polecki (ST1-1 pig) present study

E. polecki (FR686383 human)

E. polecki (AF149913 pig)

E. polecki (MK801460 pig)

E. polecki (LC067574 pig)

E. polecki (FR686385 pig)

E. polecki (ST3 pig) present study

E. polecki (AJ566411 ostrich)

E. polecki (FR686391 human)

E. polecki (MG747657 human)

E. polecki (MG747665 human)

E. chattoni (AF149912 monkey)

E. polecki (FR686393 human)

E. polecki (LC082304 monkey)

E. polecki (FR686392 human)

E. polecki (FR686400 human)

E. polecki (FR686357 human)

E. polecki (FR686398 human)

E. suis (DQ286372 pig)

E. gingivalis (D28490 human)

E. coli (AF149914 human)

E. coli (FR686364 human)

E. histolytica (X64142 human)

E. dispar (Z49256 human)

E. ranarum (AF149908 frog)

E. invadens (AF149905 snake)

100

100

99

99
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ST 1
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1 nucleus
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Fig. 2 Phylogram of Entamoeba polecki subtypes (ST) 1–4, related par-
asites and other Entamoeba spp. inferred by the neighbor-joining method
using partial SSU rRNA gene sequences. Accession numbers and derived

hosts are shown in parentheses. Scale bar represents substitutions per
nucleotide, and bootstrap values are indicated (> 1000)
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Notably, the transmission mechanisms for Entamoeba spp.
and for Eimeria and Cystoisospora spp., namely via fecal-
oral routes for the robust cysts and oocysts, are almost identi-
cal (Petri and Singh 1999; Schuster and Visvesvara 2004;
Joachim et al. 2018). Floors in most of the examined farms
were concrete, and thus, concrete flooring would be expected
to reduce the ingestion of intermediate hosts (worms) by the
pigs, resulting in an observation consistent with the low prev-
alence observed for Strongyloides spp. (6.1%). The farmers
cleaned such surfaces regularly (if not daily) to remove the
feces (data not shown). However, based on the frequency at
which we confirmed infection by Entamoeba spp. by PCR
and/or coccidian parasites by the floatation methods, although
we could not examine the presence of the cysts by staining
with iodine, the pigs presumably still come into contact with
cysts and oocysts before removal of feces, or cysts and oocysts
(which show environmental resistance) persisted despite floor
washing.

Sequencing revealed the presence of two sequence types of
E. polecki ST1 (ST1-1 and ST1-2), along with E. polecki ST3;
each of these sequences or subtypes formed their clusters in
phylogenetic analyses. The sequences for the E. polecki ST1-2
isolates identified in the present study were identical to those
previously obtained for the organism infecting a pig on a
different island in Indonesia (Tuda et al. 2016). These obser-
vations indicate thatE. polecki ST1-1, ST1-2, and ST3may be
widespread among pigs of Indonesia. However, further sur-
veys of additional pigs and areas will be needed to evaluate the
geographic prevalence of various Entamoeba species, sub-
types, and sequence types. The present study did not assess
the pathogenicity of these porcine isolates. Given that E. suis
and two subtypes of E. polecki are inferred to have pathogenic
effects in pigs, it will be necessary to chronologically or sea-
sonally investigate pigs to assess parasite virulence, including
effects on pig productivity and on the health of humans living
in high-prevalence areas. These wider surveys will be critical
to evaluating the zoonotic transmission and clinical impact of
Entamoeba in Indonesia.
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