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1 Introduction to 
Precision Agriculture   

1.1 HISTORY OF PRECISION AGRICULTURE AND  
ITS GLOBAL ADOPTION 

Precision farming was adopted by US agriculture in the 1980s at a sluggish rate 
of 10 to 15 years due to doubt in profitability at that time, as no legitimate pieces 
of evidence were present and the adoption of this innovation was uneconomical. 
Some specific reasons include the lack of genuine information at that time, 
farmer attitude, economic constraints in acquiring technology, and the tech-
nology itself. Later, it was discovered that the two major reasons were:  

I. Willingness: 
Willingness is directly proportional to the availability of information about 
PA, precision in information, and the probability of positive results.  

II. Ability to Adopt: 

Early in the year 2000, it was identified that the adoption of precision farming 
was related to:  

a. The degree of relevance between the existing problem and the technology  
b. Ease of handling the technology  
c. Most importantly, the profit related to the aforementioned adoption 

During the early stages of implementing precision farming, improving efficiency 
was the only motivating factor and, of course, this was not sufficient. Batte and 
Arnholt investigated that profit that was related to PA was the biggest con-
tributing factor [1]. During the first ten years, the 21st-century exponential rate 
for acceptance of PA was observed among producers as well as commercial 
businesses. 

The reason for this rapid growth in adoption during the last 15 years is related 
to certain factors:  

1. In terms of efficiency, productivity, and profitability executed in an eco- 
friendly manner, nutrient management research has enabled development.  

2. The affordable pricing of commodities led to high net profits and large 
investments in advanced technologies.  

3. Auto-guidance systems not only improved the farming efficiencies but also 
reduced the manual efforts of farmers. 
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4. There was an increase in the number of skilled people who had knowledge 
about both agricultural and technological domains. 

The abovementioned factors only constitute a few of the reasons for the adoption 
of PA in the past 15 years. However, there was a gap that needs to be bridged 
among different sectors. The acceptance of PA has boosted due to the colla-
borative and synchronized efforts of industries, researchers, institutions, and the 
media. Global extensive research is proving beneficial and is significantly 
changing the agricultural domain [2]. 

1.2 PRECISION AGRICULTURE – INTRODUCTION 

This book is aimed to provide a deeper insight into precision agriculture by 
discussing almost all of the techniques and tools that are currently used all over 
the world. 

India is a vast land with a diverse climate and has an edge in producing a 
multitude of vegetables and crops throughout the year. According to the Ministry 
of Agriculture, India has achieved the second position in terms of the production 
of fruits and vegetables worldwide, following China (Reported by Horticulture 
at a Glance 2015). The Indian population is completely dependent on the pro-
duction of cereal crops, fruits, vegetables, and milk, thus turning the country into 
a farming powerhouse globally. Nonetheless, we are still lacking in terms of 
productivity, focus, competition, and zoned agricultural sector. The requirement 
to remove these limits is quite simple: we need to adopt and promote the use of 
new technology and sciences that will be achieved by rigorous research in the 
field of agriculture [3]. The dearth of awareness as well as inadequate utilization 
of technology and traditional mechanisms for handling agricultural practices and 
constraints have negatively affected production all over the country. 

The introduction of the latest and most innovative techniques, concepts, 
methodologies, and technology to replace conventional agricultural ways, thus 
making it sustainable is called Precision Agriculture (PA). It is focused on 
maximizing production while using the least amount of resources while causing 
minimum impact on the environment by judicious irrigation and an adequate 
quantity of pesticides and fertilizers. PA critically depends upon factors such as 
information, technology, and management which have equal importance and 
accords numerous benefits on crops [4]. Nowadays, we become increasingly 
familiar with the term, and there has been a progressing trend toward this field. 
When agricultural practices are executed rather efficiently, such as when the 
proper amount of materials required (e.g. fertilizers, pesticides, nutrients, water, 
etc.) are supplied at the proper location and at the correct time to boost pro-
duction, to grow profits, to directly promote soil health, and to indirectly increase 
water quality and farmer health while reducing environmental wastes is termed 
as precision agriculture [5]. In India, PA is still in its infancy, and significant 
work is currently proceeding in this field. 
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1.2.1 FOREIGN PERSPECTIVE 

The first definition of PA was given by the US House of Representatives (US 
House of Representatives, 1997) [6]. 

Precision agriculture is an integrated information- and production-based 
farming system that is designed to increase long-term, site-specific, and 
whole farm production efficiency, productivity, and profitability while 
minimizing unintended impacts on wildlife and the environment.    

According to Gandonou [7]: 

PA can be defined as a set of technologies that have helped propel 
agriculture into the computerized information-based world and is designed 
to help farmers get greater control over the management of farm 
operations.    

As reported by the Second International Conference on Site-Specific 
Management for Agricultural Systems that was held in Minneapolis, 
Minnesota, in March 1994 [6]: 

The precision farming system within a field is also referred to as site-specific 
crop management (SSCM). 

As stated by the National Research Council, Italy 1997 [6]: 

SSCM refers to a developing agricultural management system that 
promotes variable management practices within a field according to site 
or soil conditions.    

The genetic improvement, agrochemical practices, irrigation, and farm ma-
chinery have been successful in improving productivity, but this is not significant 
enough to meet the continuously growing demand due to population expansion. 
Increased demand poses a threat to the environment as well as food security all 
over the world. Numerous innovative attempts have been pursued to enable 
sustainable crop production. Precision farming system (PFS) was one of the 
efforts that were undertaken during the early 1990s. This made its appearance in 
various forms, depending on the knowledge and technology that were available 
during its time. PFS was the combination of the latest technology and the 
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mechanization of the agro-sector. PFS made a sharp turn with the introduction of 
electronic information technology which enabled the collection, processing, and 
analysis of the data from different sources streamlined for decision-making. PFS 
has gained the platform due to a decline in the rates of agricultural products and 
increased production. Even the National Aeronautics and Space Administration 
(NASA) has shown interest in PA, hence proving the importance of its enact-
ment [6]. Furthermore, precision farming technology (PFT) acts as a reliable 
base for making site-specific management (SSM) decisions. There has been an 
enormous demand for information about technologies that are used to manage 
agricultural production systems with the introduction of:  

1. Yield monitors  
2. Global positioning systems  
3. Improvements in computing power and data management [8]. 

This emphasizes the use of technologically sophisticated equipment and pro-
motes research and development in agronomy and crop and soil science in 
providing vital information and supporting decision-making for variable appli-
cation of inputs at the local levels too [9]. 

1.2.2 INDIAN PERSPECTIVE 

Below is a definition of PA that is accepted in India: 

Precision agriculture, satellite farming, or site-specific crop management 
is farming based on observing, measuring, and responding to inter- and 
intra-field variability in crops.    

Another interpretation is the following: 

PA is an information- and technology-based farm management system to 
identify, analyze, and manage variability within fields for optimum 
profitability, sustainability, and protection of land resources.    

The succeeding meaning also defines PA: 

PA is the precision application of technologies and input based on soil, 
crop weather, and market demands to maximize sustainable productivity 
and profitability.  
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Finally, another acceptable definition is in the next paragraph: 

Precision forming is generally defined as an information and technology 
best for the management system to identify, analyze, and manage 
variability within fields for optimum profitability, sustainability, and 
production of land resources.    

PA in India is different from the traditional models because the input, in this 
case, is of optimum quantity and has increased yield comparatively. The main 
components of PA are namely: information, technology, and management from a 
comprehensive system that improves the efficiency of production, its quality, 
crop efficiency, reduces energy utilization, and safeguards the environment. PA 
proves naturally beneficial for small farmers in developing countries due to more 
yield with minimum input. 

Furthermore, the masses should be environmentally conscious while adopting 
PA. Hence, there is a demand to alter conventional agricultural management so 
as to make sustainable conservation of natural resources (i.e. water, air, and soil 
quality). The concept of five “Rs” in the PA explain further [10], [11]:  

a. Right input (of fertilizers and pesticides)  
b. Right time  
c. Right place  
d. Right amount  
e. Right manner 

This is called site-specific management. Market-based global competition in 
agricultural products is the main challenge of the traditional agricultural systems, 
so the scope of PA lies in this aspect [12]. In PA, we need to accumulate huge 
data that comes from a myriad of sources while mapping the factors of soil, crop, 
and environment of the field. Therefore, PA is said to be “information intense”. 
Figure 1.1 shows the information flow below. 

The data is acquired from the internal factors (e.g. soil, crop, environment) 
and is then compounded by expert knowledge (e.g. the site data manager) as well 
as data from the existing market and the metrological department. The devel-
opment of data integration tools, expert systems, and decision support systems 
makes the administration of this huge data more convenient (Sigrimis et al., 
1999). There should be provisions in PA for the standardization of data for-
mats [9]. 

Some basic steps involved in PA are illustrated through the succeeding 
flow chart [13]: 

Introduction to Precision Agriculture                                                       5 



1.3 NEED AND SCOPE OF PRECISION AGRICULTURE 

The population of India is growing rapidly, and unless affordable technologies and 
solutions are developed for farmers and applied to minimize crop deficiency, food 

FIGURE 1.1 Information Flow in Precision Agriculture  

Sensing agricultural parameters

Identification of Sensing location 
and data gathering

Transfering data from crop field to 
control station for decision making

Actuation and Controlled Decision 
based on sensed data

FIGURE 1.2 Basic Steps Involved in PA  
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security would be a challenge [4]. Significant improvements include the minimal 
use of water, fertilizers, pesticide, insecticide, and herbicides along with the spe-
cialized equipment necessary. The earlier concept of farming was based on the 
assumption of hypothetical average conditions, which was far from the actual 
situation, so there was a need to be precise in order to identify the site-specific 
differences within fields and modify management plans accordingly (Figure 1.1). 
The variations in the yield across the whole area of a farmer’s administration are 
usually noted. These are actually the results of soil properties and environmental 
characteristics along with the management strategies. It was an arduous task for a 
farmer to retain information about the field conditions and corresponding neces-
sary treatments which he gained through years of trial and error. Moreover, the 
shift in areas of cultivation made it even more difficult for the farmer to adopt the 
same measures that were observed through past experiences. PA has eased this 
problem by an automatic and simplified collection of information – analyzing data 
and providing results for better management decisions which are faster and quickly 
implemented on specific sites within large fields (Figure 1.3 [13]). 

1.4 COMPONENTS OF PRECISION AGRICULTURE 

Precision agriculture is hinged on the 5 R’s: right input, right time, right place, 
right amount, and right manner [10]. For the smooth implementation of PA, 
these 5 R’s should be fulfilled. PA is all about collecting and satisfying accurate 
information that is required in a number of precision agriculture tools. 

On the other hand, PA is possible only due to the recent advancements in the 
technological arena. These technologies can interoperate to make a working 
precision agriculture system to assist farmers when making site-specific man-
agement (SSM) decisions and also other relevant operations. Technologies like 
yield monitors, global positioning systems, and more, and has thus increased the 
demand for the agricultural production system due to improvements in compu-
tational and data management capabilities. 

Precision agriculture can also be considered as a management strategy which 
is an upgrade of the conventional strategies, and it uses important data for site- 
specific decisions that are associated with crop production. It allows for the 
management of spatial and temporal variability within a field, a reduction of 
costs, an improvement of yield quantity and quality, and a minimization of 
environmental impacts. 

Accordingly, it can be concluded that PA has three main components: 

1.4.1 INFORMATION 

To achieve maximum results in PA, vital information is necessary for parameters 
such as crop characteristics, soil properties (e.g. topography, fertility status, 
texture, moisture content/retention, tillage needs, salinity, waterlogging, etc.), the 
incidence of pests (e.g. insects, diseases, weeds, and others), weather/climatic 
conditions, other biotic and abiotic stresses, plant growth response, harvest and 
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postharvest handling, marketing and market intelligence, and socioeconomic 
conditions of farmers, among others. The data can be used for almost all of the 
processes to produce a significant improvement in comparison to traditional 
agriculture. It can be used to create information-rich maps of the farms/villages/ 
regions (e.g. different soil characteristics, groundwater, pest incidence, weed 
distribution, topography, environmental pollution, etc.). This information serves 
as the backbone for accomplishing site specific-decisions [14]. 

1.4.2 TECHNOLOGY 

Emerging technologies work hand-in-hand with precision farming in order to 
keep farmers updated and to provide them with all of the associated benefits. The 
technologies have proven to increase production, productivity, and profitability 
to a compelling magnitude. The use of remote sensing and geographic in-
formation system (GIS), GPS, auto-analyzers, sensors, actuators, and computers 
along with appropriate software, massive storage technologies, real-time com-
puting devices, and more can help in precisely identifying the areas of defi-
ciencies and quantifying the analysis of the economic significance of the soil- 
water-fertilizer-pest-crop-related constraints beside their environmental impacts 
at the farm/village/region levels. These can provide important guidance for 
adopting the systems of integrated management of soil health, nutrients, pests, 
water, energy, and different crop genetic resources. By using sensors, the 
postharvest quality of the produce can be monitored and enhanced. Drones can 
be used for surveillance and spraying purposes. In addition, driverless tractors 
are an incredible example of PA technology. Finally, IoT systems have certainly 
been an advancement in PA [14]. 

1.4.3 MANAGEMENT 

It is correctly spoken that, “Management is the key to success in Precision 
Agriculture.” Accurate management is vital for the performance of precision agri-
culture. Management combines information obtained with available technology into 
a comprehensive administration system. The user must possess sufficient knowledge 
to apply the aforementioned information and technology to be able to procure 
maximum benefits. The 5 R’s are supported by precise and competitive manage-
ment. The complexity of agriculture and diverse expertise required for the devel-
opment and dissemination of knowledge-intensive precision farming technologies 
require the multidisciplinary efforts of agronomists, plant breeders, soil scientists, 
agro-meteorologists, entomologists, plant pathologists, weed scientists, biotechnol-
ogists, economists, extension workers, and, of course, farmers [14]. 

For effective PA, there is an obligation for information management, a de-
cision support system (DSS), and a specific precision agriculture service 
provider [15]. 
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1.5 TOOLS AND TECHNIQUES 

1.5.1 GLOBAL POSITIONING SYSTEM (GPS) 

The Global Positioning System (GPS) [12], [16], [17] is the most important tool 
in precision agriculture. It is defined as a navigation system that consists of a 
network of satellites that enables the identification of locations within a meter of 
an actual site in the field (100 m to 0.01 m) [12]. This location contains in-
formation such as latitude, longitude, and elevation of that specific portion of the 
field in order to identify details about crops, soil, water, obstructions, pest oc-
currence, weed invasion, among other relevant things at that position. A user 
with such a sophisticated and accurate position system has the means to handle 
precision agriculture. The following are some of the benefits of GPS in 
agriculture:  

• Mapping of soil and crop measurements  
• Application of inputs (e.g. seeds, fertilizers, pesticides, herbicides, and 

irrigation water) to target areas  
• Monitoring yield  
• Management of farm 

1.5.2 GEOGRAPHIC INFORMATION SYSTEM (GIS) 

The Geographic Information System (GIS) is a revolutionary technology that 
enables work on data that is associated with a spatially mapped area on the earth. 
It is a database that is specially designed to work with map data. GIS is a 
platform to handle the compilation, storage, retrieval, and analysis of data that is 
related to the attributes of a particular location (i.e. spatial information). GIS 
software facilitates the storage and organization of data from multiple sources of 
site-specific and geographical data information in various layers. Each layer in 
GIS is termed “coverage” and consists of topologically linked geographic fea-
tures (e.g. topography, soil types, surface drainage, subsurface drainage, etc.) and 
associated data. GIS is undoubtedly more than a mere traditional map that has 
the ability to provide relative solutions. Rather, it bears computing and analysis 
power that generates complex views of the fields and conceives valid agro- 
technological decisions. 

GIS-systems are reliable for data synthesizing and decision-support systems 
in many fields; however, GIS should not be confused with the decision-making 
systems themselves. 

1.5.3 WIRELESS SENSOR NETWORKS 

Wireless Sensor Networks (WSN) [3] is a technology in which a number of 
sensors are deployed across the field as per the requirement and are consolidated 
in a network that provides information about various parameters in the field. 
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There have been advancements in the field of sensor development that have 
resulted in significantly more accurate sensors. Sensors are mainly used for 
humidity, vegetation, temperature, texture, structure, physical character, hu-
midity, nutrient level, vapor, air, etc. in PA. These data, when processed and 
analyzed, give a valuable result that helps in achieving the objectives of PA [12]. 
The WSN has been explained in-depth in ‘chapter WSN.’ 

1.5.4 AGRICULTURAL DRONES AND ROBOTS 

Drones are versatile and have found their application in various sectors, in-
cluding the agricultural arena. With the implementation of artificial intelligence 
(AI) in drones, their application in precision agriculture has significantly in-
creased as it is convenient for a farmer to operate. Drones help in various op-
erations like data collection, crop and field monitoring, disease detection, as well 
as many PA practices like spraying inputs, surveillance, etc. 

The aim of AI has always been to minimize human efforts that are using this 
disruptive technology. The precision agriculture realm is one of the important 
fields which need automation and smart devices that can perform functions that 
once needed human intervention. Examples include smart tractors that are 
straightforwardly AI-based machines possessing multiple technologies such as 
sensors, radars, and GPS systems to perform the functions independent of an 
operator [18]. 

1.5.5 SATELLITES 

Satellite data provides many advantages in precision agriculture over conven-
tional methods, particularly in terms of timely decision-making mechanisms, 
spatial depiction, and coverage including cost-effectiveness. Space data is used 
in addressing many critical aspects such as crop area estimation, crop yield and 
production estimation, crop condition, deriving basic soil information, cropping 
system studies, experimental crop insurance, and more [19]. Satellites are also 
used as a management tool in the practice of precision agriculture, because sa-
tellite images are used to characterize a farmer’s fields in detail and are often 
used in combination with geographical information systems (GIS) to allow more 
intensive and efficient cultivation practices [20]. 

1.5.6 PRECISION IRRIGATION SYSTEM 

A sprinkler irrigation system that has GPS-based controllers is an example of the 
important tools used in precision agriculture. The Wireless Sensor Networks in 
these irrigation systems help to monitor soil and ambient condition along with 
the operational parameter of the irrigation system that includes floe, pressure 
levels, etc. This information helps in the precise application of the amount of 
water to optimize the yield. 
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1.5.7 SOFTWARE 

A variety of software is needed for a multitude of tasks in PA. Certain types of 
software with specific functions are listed below [12]:  

• Software for mapping  
• Software for variable-rate applications and map-generators  
• Software to overlay different maps  
• Software to provide advanced geostatistical features  
• Software having statistical analysis tools 

Precision farming software includes controller tools that are widely used in 
precision agriculture technology. IoT improves software maintenance – for ex-
ample, through automatic equipment updates – and introduces new solutions for 
farm management, such as managing a safe-driving tractor remotely via a con-
troller. The capacity of modern precision agriculture and IoT enables controlling 
dozens of equipment units simultaneously [21]. 

1.5.8 YIELD MONITORING 

In precision agriculture, yield monitoring is paramount. The yield monitoring 
system is a combination of various components like sensors, storage devices, 
user interface, computing machine, the control system for integration and in-
teraction of these components, and more. Yield monitors are attached with 
equipment, such as combined harvesters or tractors, to gather a significant 
amount of information – specifically, grain yield, moisture levels, soil properties, 
and much more. This data is collected for more than ten years to provide rich, 
meaningful data for spatial and temporal trend analysis and management in-
formation. Yield mapping can be done with a GPS combined with the yield 
monitoring system [8]. 

1.5.9 ONLINE PLATFORMS 

In this era of the Fourth Industrial Revolution, there is an enormous amount of 
information that is being administered by the government, organizations, volunteers, 
etc. to promote and help in the application of PA by farmers. The business sectors 
promote their PA equipment and software technologies through these online plat-
forms and can also help users to find the right solutions with their tools [12]. 

1.5.10 REMOTE SENSING 

Remote sensing is the art and science of gathering information about objects or 
areas of the real world from a distance without coming into direct physical 
contact with the objects under study. The principle behind remote sensing is the 
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use of electromagnetic spectrum (e.g. visible, infrared, and microwaves) for 
assessing the earth’s features. 

Remote sensing is an important tool in PA that has shown momentous ben-
efits in combination with GIS, GPS, satellites, etc. The following are some of the 
ways how remote sensing leverages the benefits of PA [16]:  

• Soil mapping; climate and land characteristics determination  
• Crop nutrient deficiency detection  
• Vegetative analysis  
• Crop yield estimation and production forecasting  
• Indian crop yield forecasting  
• Satellite-based agro-advisory service  
• Pest management  
• Assessment and monitoring  
• Soil site suitability assessment  
• Soil moisture estimation  
• Floods assessment and monitoring 

1.6 SITE-SPECIFIC CROP MANAGEMENT (SSCM) 

There are various definitions of SSCM, the first is noted below: 

SSCM refers to a developing agricultural management system that promotes 
variable management practices within a field according to site or soil 
conditions. (National Research Council, 1997) 

The second interpretation is the following: 

Site-specific crop management (SSCM) is the precision farming system 
within a field [6]. 

Another meaning characterizes SSCM: 

SSCM is a form of PA whereby decisions on resource application and 
agronomic practices are improved to better match soil and crop require-
ments as they vary in the field. 

Some experts believed that SSCM is not a single technology, but rather, an 
integration of technologies that enable the succeeding operations [6]:  

1. Collection of data on an appropriate scale and at a suitable time  
2. Interpretation and analysis of data to support a wide range of management 

decisions  
3. Implementation of management responses on an acceptable measure and at 

the correct time 
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The last definition, in this case, focuses mainly on the management perspective. 
The SSCM is referred to as an evolving management strategy that aims to 
achieve equitable conclusions by efficient decision-making based on the use of 
resources, and less importance has been given to the information technology on- 
farm (although, many new technologies will aid improved decision-making). 
The assumption is that better decision-making will provide a wide range of 
benefits, including economic, environmental, and social, that may or may not be 
known or measurable during the present. The decisions can be in regard to 
changes across a field at a certain time in the season or changes through a season 
or seasons. 

To further expand this concept, SSCM can be considered as the application of 
information technologies that are combined together with production experience 
in order to:  

1. Optimize production efficiency  
2. Optimize quality  
3. Minimize environmental impact  
4. Minimize risk 

The functions mentioned above are all at the site-specific level. 
This is not a particularly novel concept in agriculture, as there exist essays on 

this topic dating from the early 18th century. In this case, what is new is the scale 
at which we are able to implement these aims. Prior to the industrial revolution, 
agriculture was generally conducted on small fields with farmers often having a 
detailed knowledge of their production system without actually quantifying the 
variability. The movement toward mechanical agriculture and the profit margin 
squeeze has resulted in the latter half of the 20th century being dominated by 
large-scale uniform “average” agricultural practices. The advancements of 
technology during the late 20th and early 21st centuries have allowed agriculture 
to return toward site-specific agriculture while retaining the economies of scale 
associated with “large” operations. 

1.7 VARIABLE RATE APPLICATION (VRA) AND VARIABLE  
RATE TECHNOLOGY (VRT) 

Variable Rate Application (VRA) is the process of the application of inputs at a 
fluctuating rate, and the mixture of inputs is also changing in order to meet the 
site-specific requirements – both spatial and temporal – across the field. 

There are two basic technologies for VRA, as discussed below:  

a. Map-Based VRA: 
A map-based VRA configures the application rate based on information 
from an electronic map, which is also referred to as a “prescription map.” 
Using the field position from a GPS receiver and a prescription map of the 
target rate, the concentration of input is modified as the applicator moves 
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through the field. Canopy management can be conducted with a combi-
nation of crop sensors and real-time modeling.  

b. Sensor-Based VRA (No GPS): 

A sensor-based VRA requires no map or positioning system. Sensors on the 
applicator measure soil properties or crop characteristics “on the go.” Based on 
this continuous stream of information, a control system calculates the input needs 
of the soil or plants and transfers the information to a controller which, in turn, 
delivers the input to the location measured by the sensor. 

In some SSCM systems, both types of VRA are compatible so as to take 
advantage of the benefits present in both methods [8]. 

Variable Rate Technology (VRT) helps in achieving the fundamental objec-
tive of precision farming by enabling the optimum application of water, nu-
trients, chemicals, etc. on the basis of varying site-specific needs. VRT finds their 
applications in many farming practices so as to apply inputs at a rate that depends 
on the soil type noted in a soil map that has been generated from GIS. The data 
that is acquired from the GIS can be extrapolated to find valuable information 
that can help in control processes – such as seeding, fertilizer and pesticide 
application, herbicide selection, and application at a variable rate in the right 
place at the right time. VRT consists of machines and systems for applying the 
desired rate of crop production materials at a specific location [8]. 

Variable Rate Technology consists of farm field equipment with the ability to 
precisely control the rate of application of crop inputs that can be varied in their 
administration commonly include tillage, fertilizer, weed control, insect control, 
plant population, and irrigation [17]. 

In VRT, the system is fitted with rate controllers with the purpose of regulating the 
application of input that can be of any form – liquid or granular. These rate con-
trollers can monitor the speed of the machine that they are installed on. Therefore, the 
flow rate and pressure (in the case of liquid inputs) of the material is adjusted in real- 
time accordingly. Rate controllers are often used as stand-alone systems [12]. 

1.8 ADOPTION OF SMART PRECISION AGRICULTURE 

After previously studying the introductory details about precision agriculture – 
the concept and the technologies associated with PA – users should also know 

Application Map Controller Application

FIGURE 1.4 Map-Based VRA  

Sensor Controller Application

FIGURE 1.5 Sensor-Based VRA  
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about another relevant term that is currently popular and one of the most trending 
topics: “Smart Precision Agriculture.” Industry 4.0 has universalized disruptive 
technologies like the Internet of Things, artificial intelligence, machine learning, 
deep learning, cloud computing, Edge-Fog Computing, among other things, that 
have made drastic changes in agriculture and possess a high potential to make a 
positive impact on productivity and the profitability of the agricultural sector. 
Cyber-physical systems (CPS) introduced in agriculture have been one of the 
causes for its automation. The term “Smart Precision Agriculture” is the result of 
Agriculture 4.0 (as explained further in Chapter Eight). The increasing demands 
of the agriculture sector were counterbalanced in Agriculture 4.0 by reinforcing 
agricultural systems with WSN, IoT, AI systems, etc. Therefore, it accelerated 
the journey towards smart precision agriculture. Age-old limitations and issues in 
agriculture were solved because scientific approaches became more efficient and 
accessible. Smart PA has been able to provide for economic farming, an upsurge 
in yields and productivity, effective management, etc. All of this has been 
achieved with the fulfillment of IoT and ML (machine learning) in agricultural 
practices [22], [23]. 

Some examples of Smart PA include the following items:  

Smart monitoring systems for crops, weather, field, irrigation, soil health, etc. 
[3], [23–26], 
Smart agricultural machinery [4], [23], 
Solar-powered automated drip irrigation system [27], 
Smart agricultural drones [18], [22], 
SMART greenhouse production [22], [23]. 

The benefits of smart PA are plentiful, and it is not possible to mention every 
single one in this section. 

Rather, some major benefits of Smart PA include:  

• Less environmental degradation  
• Improvement in production and productivity of crops  
• Overall reduction in production cost  
• Precise and accurate knowledge about all of the sectors of agriculture  
• Minor human intervention  
• Adaptive technologies in providing the best results  
• Improvement of agricultural practices beyond human limitations using 

technologies like ML and deep learning  
• Excellent management and predictions 

1.8.1 SCOPE OF THE ADOPTION OF PRECISION AGRICULTURE IN INDIA 

“Soft” PA is based on the visual observation of crops and soil and management 
decisions that are derived from experience and intuition and without proper 
statistical and scientific analysis. Whereas, “Hard” PA uses all of the modern 
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technologies such as GPS, GIS, VRT, and more that were previously discussed 
above. 

The success of PA in India will be attributed to the balanced use of both “soft” 
PA and “hard” PA. In India, the land is fragmented, and this becomes the major 
hindrance for large-scale agricultural mechanization. For centuries, farmers have 
been practicing types of “soft” PA technology – whether intentionally or 
otherwise – due to the family responsibility system. Currently, India is producing 
more than 200 metric tons of food grain; however, the quantity is still insufficient 
in meeting the demands of the global agricultural market. This proves that 
quality is necessary to compete with international standards, so here lies the 
tremendous scope for PA in India. 

An example further illustrates this below: 
The overall fertilizer consumption rate in India is lower by approximately 2 to 

5 times when compared to countries like China, Egypt, and the Netherlands. 
Studies have shown that, in most of the states of India, if systematic soil testing 
is done and proper NPK fertilizers are applied, then the productivity level can 
increase by 2 to 3 times. 

However, inadequate fertilizer application still prevails due to costly tradi-
tional soil sampling. 

• Scope: Cheap dynamic soil sampling technology and nutrient status ana-
lysis on a large scale by Remote Sensing (RS) and Geographical 
Information System (GIS) in these states can do wonders. 

In contrast, some states – such as Punjab and Haryana – have scale mechan-
ization along with high doses of fertilizers and pesticides which exploit the land 

Precision 
Agriculture

Soft PA Hard PA
FIGURE 1.6 Types of PA   

TABLE 1.1 
Production Rank and Productivity Rank of Wheat and Cotton in India     

Crop Type Production Rank (Global) Productivity Rank (Global)  

Wheat 2 32 

Cotton 4 118    
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and excessive use of agricultural input are typical problems. The signs of a 
depletion in the natural resources deem it more or less suitable for “hard” PA. 

1.8.2 STRATEGY FOR THE ADOPTION OF PRECISION AGRICULTURE IN INDIA 

The design of the adoption strategies will affect the application and success of 
PA in India. Planning must be done by conducting a significant number of ex-
periments and analyses before the administering of PA to Indian agriculture. 

There are three steps that must be undertaken in order to enter the Precision 
Agricultural Age, namely:  

1. Present stage: This is the initial stage which involves making the public 
aware of the PA concept through media, workshops, seminars, and other 
relevant channels. This involves the development of satisfactorily skilled 
and specialist manpower, proper institutions for PA, and uniform crop and 
soil management. communication, seminars, workshops, etc.  

2. Intermediate stage: This follows a layered random sampling within the 
zone that precisely describes the management zone throughout the country 
and validates computer models with zone-specific data.  

3. Future stage: In this stage, zone-specific computer models are simulated 
for agricultural input conditions and specific sensing and management that 
involves fine grid sampling and sensing. 

Table 1.2 displays a primitive way of making people understand the application 
of PA below [5]. 

1.9 SOME MISCONCEPTIONS ABOUT PRECISION  
AGRICULTURE 

Until such time that the PA concept becomes more widely accepted, there will still 
be certain misconceptions regarding it. A few of these may include the following:  

1. Sometimes, PA is misunderstood as yield mapping. In actuality, yield 
mapping is simply a tool that comes in handy for implementing an SSCM 
strategy of PA. 

TABLE 1.2 
The Problem and Its Likely Solutions in Precision Agriculture     

Crop Type Production Rank (Global) Productivity Rank (Global)  

Wheat 2 32 

Cotton 4 118    
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2. Other times, PA is considered sustainable agriculture – which is not 
completely true. PA is merely a way to help make agriculture more viable. 
The development of SSCM as a form of PA was only due to the fact that it 
had the capability of improving productivity and profitability.  

3. Often, PA is misinterpreted with SSCM in the environmental domain. PA 
has become a tool for environmental auditing of production systems, but 
environmental auditing does not equate to environmental management. For 
this purpose, a large amount of fine-scale data is acquired by the SSCM 
system, which can be used for on-farm environmental risk assessment and 
incorporated into a whole-farm plan to help endurance in the long term.  

4. Machinery guidance and autosteer systems are examples of tools used in 
SSCM and, therefore, cannot be considered as PA.  

5. PA is quite related to cropping, but it can also be associated with any 
agricultural production system (e.g. animal industries, fisheries, and for-
estry) in which we actually use the PA without explicitly identifying it [28]. 

1.9.1 HURDLES FACED BY FARMERS IN ADOPTING PRECISION  

AGRICULTURE IN INDIA 

There are a number of reasons why there is still a hindrance in the adoption of 
PA [29]:  

1. The high illiteracy rate among Indian farmers makes it difficult for them to 
adopt PA technologies.  

2. The advanced technologies used in PA are a barrier itself due to the fact 
that these are handled by the aforementioned farmers.  

3. Adequate decision support tools are lacking.  
4. The proper understanding of the agronomic factors is missing.  
5. There exists an inability to streamline information from different sources 

that have different impact factors. 

1.9.2 PRESENT STATUS OF PA IN INDIA 

Presently, PA is at the infancy stage in India. Many discrete measures have been 
taken toward its adoption and implementation. Some of these are specified below:  

1. A budget of US$285 million has been announced for the National 
Agricultural Innovation Project (NAIP), and this is purely dedicated 
to PA research.  

2. The “Tamil Nadu Precision Farming Project” has been initiated by the 
Tamil Nadu Government. Currently, it is implemented in two districts with 
a future extension to six more. Mainly, it is focused on hybrid tomatoes, 
capsicum, baby corn, white onion, cabbage, and cauliflower which fall 
under the category of high-value crops. 
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3. Bhopal also started variable rate input application in different cropping 
systems with the joint collaboration of the Project Directorate for 
Cropping Systems Research (PDCSR Uttar Pradesh) and the Central 
Institute of Agricultural Engineering (CIAE).  

4. Ahmedabad has admitted experiments with the Space Application Center 
(ISRO) in the Central Potato Research Station farm at Jalandhar, 
Punjab, to make comprehensive studies on the role of remote sensing in 
mapping the variability with respect to space and time.  

5. 17 Precision Farming Development Centers (PFDCs) are located in 
different places in the country to meet the corresponding regional re-
quirements in the fulfillment of PA. Therefore, the development of spe-
cialized centers and scientific data bank is considerably important for PA. 

1.9.2.1 Some Important Functions of PFDCs are Mentioned below:  

a. To popularize and make the public aware of PA  
b. To provide training to an extensive number of farmers so that they are able 

to operate the latest PA technology in order to increase their production  
c. To focus on precision irrigation water management, as is the main role of 

PFDCs  

1. The government and private agencies are working as an alliance to elevate 
PA to greater heights in India. 
An example includes the establishment of a new precision farming center 
by MS Swaminathan Research Foundation (MSSRF) – a non-profit trust – 
at Kannivadi in Tamil Nadu with financial aid from the National Bank for 
Agriculture and Rural Development (NABARD) and the Arava R&D 
Center of Israel. The major aim of this precision farming center is poverty 
alleviation by adopting PA technologies.  

2. The strategy for exploring the potential of advanced technology in the 
agricultural domain by Tata Chemicals Ltd. – a private sector – has been 
started with a project that aims to:  

a. Provide farmers with infrastructure support  
b. Arrange for operational assistance in the fields  
c. Implement coordination and control of farming activities and strategic 

support  

3. Indian Tobacco Companies (ITC) have established bout 1,200 “E-Choupals” 
in four Indian states – which are village internet kiosks that provide access to 
information on the weather, market prices and scientific farm practices, crop 
disease forecasting system, and expert crop advice system. 

It is fairly visible that PA has yet to gain popularity in small Indian farms. Some 
of the above-stated works have proven rather beneficial to PA in India, whether 
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directly or indirectly, by setting a platform and solid foundation for its adoption 
at a high scale. 

However, no “hard” PA technologies have been adopted to date (Mondal, 2009). 
Few soft PA techniques are used on the basis of knowledge gained through 

experience by the Indian farmers, and this has been the case for centuries. Some 
initiatives have been taken in providing need-based nutrient applications for 
paddies, while the use of technology has been initiated at some places. 

In order to avail of the complete benefits of precision agriculture, the Indian 
government should organize and plan certain long-term policies that are not only 
required for the present scenario, but also have future scope [30]. 

1.9.3 STATUS OF PRECISION FARMING IN SOME DEVELOPING COUNTRIES 

The status of countries is different depending upon its limitation and critical 
parameters of sustainable agricultural development. Alteration in the socio-
economic factors of some developing countries is creating new scopes for PA. 
The world’s urban population has increased ten times during the 20th century, 
and most of which is associated with low and middle-income nations such as 
India. Other examples of developing countries that have recently adopted certain 
PA components are Argentina, Brazil, China, India, and Malaysia. Other 
countries have started PA on some research farms, but generally, the percentage 
of adoption is still rather limited. Keeping an eye constantly open for the present 
status of technology will help in identifying the adoption ways and will also try 
to concentrate the research in a particular direction. Therefore, there is a need to 
gain a thorough review of the status of PA in developing countries [30]. 

Table 1.3 shows the common PA adoption strategies for developing countries 
by P. Mondal and M. Basu below [30]: 

TABLE 1.3 
Common PA Adoption Strategies for Developing Countries     

Strategic PA 
AdoptionComponent 

Technologies Target Sectors  

Single PA Technology Single low-level PA technologies, 

leaf color chart (LCC), small 

machine-based VRT, etc. 

Small-scale farms 

PA Technology Package Soil plant analysis development, 

LCC, DSS, GIS, VRT, GPS, etc. 

Consolidated plots, plantation 

crops, cash crops, cooperative 

farming, etc. 

Integrated PA Techniques 

Online 

Online sensor, image processing, 

RS, yield monitoring system, 

VRT, GPS, etc. 

Organized farming sector    
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1.10 CONCLUSION 

The introduction of PA has marked the beginning of a revolutionary era in 
agriculture that is tech-powered and has made use of technologies to avail of 
maximum benefits. PA focuses on the site-specific variabilities within the field in 
order to address all concerns precisely. The technologies like GIS, GPS, satellites, 
RS systems, sensors, etc. have been widely used to achieve the aims of PA. 
Production, productivity, and profitability have upgraded in comparison to tra-
ditional agriculture. Moreover, better management has been achieved through PA. 
Thus, in simpler words, PA uses information and technologies for accomplishing 
effective management strategies. It is important to understand that PA is a pro-
cedure that causes agriculture to become more sustainable, and SSCM is only a 
form of PA. In summary, PA is completely about the optimizations of the inputs 
in order to attain a maximum outcome, as per the variation across the field. 
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2 Smart Intelligent 
Precision Agriculture   

2.1 MODERN DAY AGRICULTURE 

The world population is increasing at an accelerated rate, thus making it a 
concern to feed such a considerable population. According to a UN report, the 
world population is expected to reach approximately 8.5 billion in 2030 [1]. This 
has made agriculture a rather important area to focus on. 

Modern-day agriculture not only aims to feed, but also to nourish even with 
limited resources available. Beginning from the era of handheld tools to the age 
of AI-powered machines – specifically, intuition-based agriculture to today's data 
supported decision systems – agriculture has undergone remarkable changes. 
The aim of every modification has always been to improve agriculture so it can 
fulfill the requirements of society. Modern-day agriculture is surrounded by a 
hyper-digital environment that introduces impact on it as well. The state of art 
technologies – such as artificial intelligence, IoT, big data, etc. – are being 
termed as “disruptive technologies” due to the fact that these are transforming 
and revolutionizing the entire world, and agriculture is no different. Agriculture 
has undergone a series of changes that have either caused significant alterations 
or complete transformations in its various sectors. Major modifications have 
been witnessed in the past half-century. Modern agriculture is also known as 
“tech-driven agriculture” and is designed to avail of maximum benefits from the 
latest technology. 

Precision agriculture focuses on the site-specific requirements in a field and 
data that is derived from the aerial images, sensors, GPS, GIS, etc., and was 
analyzed to identify the areas and parallel necessary inputs. In this case, instead 
of applying uniform input throughout, an optimized site-specific application was 
executed. The variations in the field were found by the PA tools, and corre-
sponding optimizations were provided accordingly [2]. 

Smart technological innovations have been introduced in agriculture, and 
these have improved production, productivity, and management. Intelligent 
agriculture is considered as an agricultural system that utilizes modern tech-
nologies like the internet platform, fog/edge computing, cloud computing and 
storage, state-of-the-art “information and communication technology (ICT),” 
intelligent machines, and intellectualization of agricultural management with 
special attention to the environment. This has resulted in the development of 
“smart farming.” It includes all of the components of PA and enables managing 
production processes. Intelligent agriculture is an important step toward sus-
tainable agriculture [3]. 
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In “smart agriculture,” the primary focus is data and the application of data. 
Optimized, complex systems are formed to use the gathered data in a smarter 
way. Smart agriculture is centralized on the efficient decisions that are high-
lighted and leveraged with the use of technologies like big data, GPS, GIS, 
drones, cloud computing and storage, edge/fog computing, IoT, etc. [2]. It is 
distinct from PA in the sense that it is not merely based on location information 
[4]. It is focalized on data and situation awareness, as triggered by real-time 
events [5]. 

Big data provides predictive insights for the outcomes in order to drive real- 
time operational decisions and other related processes. Big data applications 
have changed many of the approaches in traditional agriculture. However, it is 
rather difficult to say if the algorithms in the future can possibly replace farmer 
knowledge [6]. 

Currently, autonomous, robotic, and unmanned aerial vehicles have been 
developed for farming purposes [7], [8] – such as mechanical weeding, appli-
cation of fertilizer, or harvesting of fruits; when equipped with hyperspectral 
cameras, these devices can also be used to calculate biomass development and 
fertilization status of crops [9], [10]. 

2.2 DIGITIZATION OF AGRICULTURE – DIGITAL FARMING 

The digitization of agriculture refers to the evolution of agriculture from “pre-
cision agriculture” to significantly more advanced, centralized, and knowledge- 
based production systems. In simpler words, digital farming is an upgrade to 
precision farming (PF). The tools and techniques that are used in digital farming 
include those present precision farming with the addition of intelligent networks 
and data management tools. Digital farming covers all of the aspects of agri-
culture [11] 

Digital farming has a broader aim of utilizing all of the available information 
and experiences in order to conduct automation in the various processes of PF 
[11]. It mainly centers on the “value of the data” so as to derive certain actionable 
insights in order to further develop precision farming. Some of the experts state 
that digital farming is a combination of precision farming and smart farming [12]. 

The invention of new and improved devices – such as sensors, actuators, and 
microprocessors, etc. – and the advancements in communication standards, 
cloud-based ICT systems, and development in data sciences resulted in the 
employment of data that was being generated into valuable actions. Data man-
agement is of fundamental importance in digital farming, because high volumes 
of data that are obtained must be handled in a manner wherein retrieving values 
specifically collected from this data should be possible. Transferring data man-
agement to a data portal makes it easier to control the processing and flow of 
information. Digital farming allows the user/farmer to decide the allocation of 
access rights so, in this aspect, the user can retain “ownership” of the data. 
Further upgrades are limited in the case of the technological hardware when 
compared to the possibilities of improvement offered by the data algorithms. 
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Digital farming is anticipated to make maximum extraction of values from 
the data:  

• Data as a technology enabler: Digital farming enhances other precision 
farming tools by incorporating new and improved data algorithms that are 
significantly more accurate. 

• Refined production processes: Connected devices, a partially auto-
mated collection, and the targeted analysis of data help in upgrading the 
production process.  

• Decision support: Data that is obtained from multiple sources is fed to a 
system that processes and interprets the aforementioned data to support the 
farmer in decision-making.  

• Optimization of farm operations, inputs, and outputs: Data is used to 
reinforce the performance of the operations carried out, inputs applied, and 
the output gained using additional services. 

Digital farming already is a reality in some areas: For instance, there exist GPS 
guidance systems for controlled traffic farming, site-specific fertilization, or plant 
protection measures as part of a complete production/input cycle using pro-
prietary cloud-based connectivity. This being said, automated data processing 
and completely integrated, harmonized networks are still a not-so-distant future 
for agriculture and agricultural machinery. Dedicated efforts from all concerned 
actors are necessary to realize this future vision. Manufacturers of agricultural 
machines should focus, first of all, on the development of highly efficient and 
sophisticated machines that are suitable for digital farming. In other words, the 
industry should direct their attention to the advancement of machines that are 
compatible with the digital infrastructure of the farm and can make the required 
contribution to the optimization of production processes. 

Digitally smart machinery should possess the following features:  

• Ability to transfer data (i.e. send or receive data)  
• Capacity to perform the functions with the least human intervention  
• Enabling optimal utilization of machinery  
• Intelligence to guide the user 

2.3 TRANSITION TO SMART INTELLIGENT PRECISION  
AGRICULTURE 

The first breakthrough in agriculture was the invention of handmade tools – such 
as hoes, sickles, and pitchforks – that were used for cultivation. These were used 
until the end of the 19th century; accordingly, this era is known as Agriculture 
1.0 [14]. This time was characterized by low productivity and was entirely based 
on manual labor. 

With the onset of the First Industrial Revolution or Industry 1.0 during the 
period between 1784 and around 1870, there was a significant increase in 
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agricultural production, herein referred to as Agriculture 2.0. Machines that were 
used in various agricultural practices notably increased food production while 
reducing manual labor. 

The Second Industrial Revolution (2IR) occurred in the 20th century and is 
also known as Industry 2.0. New sources of energy were discovered and used in 
machines – specifically, oil and gas. Transportation improved as a result and 
caused the development of the agri-food supply chain. At this point, agricultural 
products were shipped to longer distances; thus, previously isolated communities 
became connected with the rest of the world. 

Industry 3.0 resulted in the advancement of embedded systems, software 
engineering, and communication technologies. The concept of renewable sources 
came into existence, people started looking at these sources like photovoltaic 
power, hydroelectricity, and wind power. All this induced an agricultural re-
volution, which is known as Agriculture 3.0. Precision agriculture is one of the 
important transitions in agriculture, which was supported by Industry 3.0 in 
terms of yield monitoring, variable rate applications, and guidance farming 
systems. In general, these industrial revolutions caused the transformation of 
“undefined labor-intensive agriculture” into “industrial agriculture” [10]. 

4IR is still ongoing, and it has made an important fusion of emerging tech-
nologies such as the Internet of Things (IoT), robotics, big data, artificial in-
telligence (AI), and blockchain technology. Thus, giving rise to autonomous and 
intelligent machines that aid industrial production processes and supply chains. 
Hence, this induced another agricultural revolution which was referred to as 
Agriculture 4.0 [15]. 

Its key attributes are real-time farm management, a high degree of automa-
tion, and data-driven intelligent decision-making, agri-food supply chain effi-
ciency, and food [13], [16]. 

Agriculture 4.0 will be further explained in the chapter, “Agriculture 4.0 – 
The Future.” 

2.4 BENEFITS OF SMART INTELLIGENT PRECISION  
AGRICULTURE 

The benefits of the smart intelligent precision agriculture will be further ex-
amined in the succeeding chapters of this book in context with specific tech-
nology. In this section, a general overview of the advantages will be provided. 
Certain assets of smart intelligent PA are mentioned below: 

2.4.1 EFFECTIVE CROP MANAGEMENT 

Crop management is a critical task when it comes to increasing the production 
and quality of the crops. For this purpose, historical data plays a key role in crop 
management. Precision agriculture requires insight that is acquired from a deeper 
analysis of the data so that every action bears maximum efficiency. Some of 
these examples include water quantity required, time of watering, amount and 
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time of fertilizer and pesticides application, etc. Under a sophisticated IoT-based 
management technique, real-time information reaches the farmer via email or 
SMS – whatever is convenient. This has unfolded the next stages in crop 
management. 

The introduction of AI and ML in the agricultural practices for crop mon-
itoring has a profound and positive impact on agriculture in general, as many of 
its aspects have been enhanced. AI in crop sowing is used essentially to drive 
predictive analytics to determine the best time and method in sowing. 
Furthermore, crops can also be planted using AI-aided machinery at equidistant 
intervals and at optimal depths. The selection of a proper type of crop plays a 
fundamental role in determining the yield, and this choice depends on various 
parameters such as the topography of the region, climate, soil type, composition 
of the soil, market trends, etc. AI and ML help in finding new possibilities to 
improve every step taken in agriculture. Moreover, this is also paving way for 
further developing crop quality. Human limitations in analyzing data and 
forming relations among various relevant parameters are examples; on the other 
hand, an AI-powered machine can use this information to recommend a method 
that can enhance crop quality [17]. 

2.4.2 EXCELLENT SOIL MANAGEMENT 

Thorough and complete knowledge about soil is necessary to boost agricultural 
yield; therefore, the available information about soil must be accurate in order to 
acquire acceptable soil management. The data of agricultural soil properties – 
such as the estimation of soil drying, condition, temperature, and moisture 
content, etc – are administered to an ML model that serves as a reliable solution 
in providing valuable insights. Hence, availing of the maximum benefits of soil 
management becomes more convenient for agricultural purposes [18]. 

Specific examples of the abovementioned technology include Trace 
Genomics – Machine Learning for Diagnosing Soil Defects, which is similar to 
the Plantix application [19]. California-based Trace Genomics provides furnishes 
farmers with soil analysis services. Its lead investor, Illumina, helped develop the 
system which uses machine learning in providing clients with information about 
their soil’s strengths and weaknesses. After submitting a sample of soil to Trace 
Genomics, users reportedly receive an in-depth summary of their soil con-
tents [20]. 

2.4.2.1 Easy Remote Monitoring the Farm 
The agricultural industry provides a large number of options in terms of farm 
management. Some of these include cattle farms, poultry farms, beehives, etc. 
IoT has revolutionized these fields altogether, causing both direct and indirect 
types of impact on agriculture. 

With the establishment of IoT in agriculture, there has been a lot of im-
provement in this sector. People have discovered certain brilliant and innovative 
ideas. An example of such an idea was preventing the attack of animals in the 
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fields. Known conventional methods were not adequate, so IoT and cloud-based 
technology were used and this significantly reduced the loss of lives in this 
specific case [e-Device for the Protection of Agricultural Land from Elephant 
Attacks in Odisha: A Review] [21]. 

2.4.3 SMART INTELLIGENT IRRIGATION SYSTEM AND WATER  

QUALITY MANAGEMENT 

A smart irrigation system is an essential need for agriculture. For this purpose, soil 
moisture content and temperature data are regularly determined by sensors and is 
passed to a processing unit or can sometimes be interpreted by the sensor itself. With 
the help of the same IoT system, water quality monitoring can also be done in real- 
time. All of these factors contribute to making irrigation and water quality man-
agement fundamentally easier. Also, the AI-powered smart automated irrigation 
systems are capable of continuously providing precise and optimal irrigation that is 
necessary for maintaining desired soil conditions. This reduces water wastage, labor 
costs, production costs, and, at the same time, increases overall yield. Many sci-
entists believe that judicious use of water in these irrigation systems is likely to have 
a positive global impact on water [17]. The estimation of evapotranspiration is 
necessary to design and manage a smart irrigation system, but it proves to be a 
complex process to accurately calculate. This problem is solved by AI and ML 
algorithms that are able to precisely estimate evapotranspiration [18]. Specific ex-
amples include Cultyvate [22] and DIGITEUM [23], among others. 

2.4.4 INTELLIGENT AGRICULTURAL ROBOTS 

Intelligent agricultural robots are some of the rather successful intelligent ma-
chines used in this type of agriculture. The agriculture realm is possibly one of 
the most important fields in the world that have been provided with automation 
and smart devices that can perform functions that once traditionally needed 
human intervention. Companies are developing and programming autonomous 
robots that are capable of handling essential agricultural tasks – such as har-
vesting a higher volume of crops at a faster pace compared to human laborers 
who are using this disruptive technology. An example of this is RIPPA, a robot 
that exterminates pests and weeds [24]. 

2.4.5 HIGH ACCURACY IN DISEASE PREDICTION, DETECTION, AND CONTROL 

Each year, there is approximately a 37% loss in crop production. Predictions are 
done based on computational analysis. Both machine learning and deep learning 
are incorporated, and diseases and pest attacks can be forecasted using various 
algorithms. Convolutional neural networks are also used to train the system. IoT 
has the unique feature of being able to inform the farmer via a cellular network 
using his/her phone so they can take necessary action.  
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Accurate disease prediction is a breakthrough in smart intelligent precision 
agriculture. Early disease detection and even disease prediction have promoted 
better-quality yields. Accurate detection is made possible by AI and ML tech-
niques. AI and ML models have successfully been able to analyze heterogeneous 
data and data with a lot of noise more advantageously [25–27]. 

2.4.6 LABOR CHALLENGE MITIGATED 

The shortage of laborers has reportedly led to millions of dollars in revenue 
losses in key farming regions. Machines that are currently used in smart in-
telligent precision agriculture have made it possible to compensate for the re-
duction in available manpower for agricultural practices. Examples of such 
efforts include Harvest CROO Robotics, notably for crop harvesting. 

2.4.7 LEADS WAY FROM PRECISION AGRICULTURE TO AGRICULTURE 5.0 

Another use of smart intelligent precision agriculture is that with the adoption 
of all of the components of PA in combination with smart and intelligent 
agriculture technologies like WSN, IoT, AI, ML, big data analytics, blockchain, 
etc., smart intelligent precision agriculture has paved way for the paradigm 
shift from “precision agriculture to “Agriculture 5.0.” In some particular tasks, 
these smart machines that are powered by AI are able to outperform a 
human expert. Such examples include the use of computer vision in image 
analysis [17]. 

2.4.8 SMART INTELLIGENT GREENHOUSE 

With IoT in action, greenhouse shortcomings have been significantly mitigated. 
The WSN that can be deployed in greenhouses can oversee environmental 
conditions and transmit this specific data to a storage location, after which the 
data is analyzed using an array of sophisticated tools and diagnostic models. 
Monitoring becomes easy; remote access to various elements like the irrigation 
system, light intensity system, temperature control system, etc is now possible. 
In modern times, a farmer can manage a number of processes through a 
smartphone [5]. AI has a crucial application in a greenhouse for scrutinizing 
functions. The AI-backed system is designed to control and manage the climate 
of the greenhouse with an emphasis on rigorous analysis of data in order to 
achieve a high level of precision. Due to various parameters that must be con-
sidered while adjusting the climate of the greenhouse, it becomes a tedious task 
to handle through conventional means. Artificial Neural Networks (ANNs) and 
Fuzzy Logic Controllers (FLCs) are some of the methods used in this process to 
attain high accuracy in regulating temperature and humidity [17]. These tech-
nologies have contributed to transforming the traditional greenhouse into a smart 
intelligent greenhouse. 
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All of the benefits mentioned above are implemented with security as the 
primary concern. Highly secure encryptions are used for devices as well as the 
data involved in “smart intelligent precision agriculture” [28]. 

2.5 CONCLUSION 

Every industrial revolution has made a powerful impact on agriculture. 
Moreover, precision agriculture marked the beginning of a new era in agri-
culture. Concepts like digital farming and smart farming that are sometimes used 
interchangeably actually have notable differences. Disruptive technologies have 
transformed agricultural practices and have caused the emergence of a new 
concept that is known as Agriculture 4.0. Further advancements in technology 
have brought “smart intelligent precision agriculture” into existence, which is a 
combination of all of the pioneering technology adopted – such as AI, ML 
concepts, deep learning concepts, and more – in a smart precision agricultural 
system with machines that have certain relevant artificial intelligence. 
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3 Adoption of Wireless 
Sensor Network (WSN) 
in Smart Agriculture   

3.1 SENSORS AND WIRELESS SENSOR NETWORK 

The concept of automating the collection of physical information by monitoring 
environments is still in its infancy. Developments in the silicon industry in 
conjugation with Moore’s Law paved a path for the design of rather unique, 
small, and robust alternatives that were developed and used for the task of 
monitoring physical entities in the surrounding environment. With the ad-
vancements in semi-conductor, networking, and material science technology, the 
use of electronic instrumentation for the automation of daily life tasks has be-
come a new domain of experimentation and experiences. The design and cost- 
effectiveness of the three technologies have given birth to a new branch of potent 
networking hardware devices called sensors. 

Sensors, also referred to as motes, are “battery-operated hardware that have 
the capability of sensing physical information, processing, and communicating 
information among other sensors or directly to the base station or a remote 
storage.” In other words, a sensor node can be defined as “an electronic device 
with a limited power supply that is able to produce a measurable stimulus re-
quired to modify a physical condition that is being sensed by the node.” The 
sense organs present in a human being are the best metaphors of what a sensor 
node is and how it functions. Each sensor node has four main components: a 
micro-controller, a transceiver, a power source, and external memory, as shown 
in Figure 3.1, and this can either be analog or digital in nature [1–3]. 

Analog sensors produce raw analog signal (in the form of a continuous wa-
veform) values depending on the physical environment that they are detecting. 
ADCs are required to convert this wave nature information into digital form (i.e. 
0s and 1s), for easier understanding of the micro-controller as well as the human 
operator. 

Digital sensor directly recognizes the data in the form of 0s and 1s – speci-
fically, complete digitization hardware is in place. These employ high power 
constraints, and every action must be accurately timed. 

3.1.1 POWER SUBSYSTEM 

Due to the wireless and computational nature of a sensor node, an adequate 
power supply is required for the node to be able to function properly. An external 
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battery or solar power source is attached to a node, as nodes need to be deployed 
for monitoring and processing of detected information of a particular target 
under consideration. In this case, the different types of batteries that are used for 
sensors are either rechargeable or non-rechargeable and are composed of elec-
trochemical elements such as NiCd (Nickel Cadmium) and Lithium-ion, among 
others. Most of the current research is focused on the development of energy- 
efficient data transmission and aggregation schemes such as dynamic power 
management (DPM) and dynamic voltage scaling (DVS), and these are used in 
order to maximize the use of the rather limited battery power source of nodes 
[4], [5]. 

3.1.2 COMPUTATION SUBSYSTEM 

The computation subsystem consists of two important components – namely, a 
micro-controller and a storage unit. The micro-controller is a small computer 
placed on a single metal-oxide semiconductor that is an integrated circuit chip 
with power consumption defined in milliwatts or microwatts. The micro- 
controller is responsible for processing information as well as computing and 
controlling the other units of a node – comparable to the CPU of a computer. 
Each micro-controller has a memory unit along with some programmable input/ 
output features. The attached memory unit is non-volatile flash memory 
(EEPROM, ROM) which is used to store necessary program instructions or 
application-related data. Certain famous micro-controllers include Texas 
Instruments MSP 430, Atmel Atmega, and Intel StrongARM [2], [6]. 

3.1.3 COMMUNICATION SUBSYSTEM 

The communication subsystem consists of the module that is in charge of the 
communication aspect of the sensor node that is used for the transmission of 

FIGURE 3.2 8051 Micro-Controller [7].  
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collected information. Wireless forms of communication – such as radio fre-
quency (RF) or infrared – are notably common forms for sensors. Together, the 
transmitter (Tx) and receiver (Rx) comprise the transceiver of the node and are 
responsible for transmitting and receiving radio signals for possible 
communication. 

3.1.4 SENSOR SUBSYSTEM 

The sensor subsystem is a piece of hardware that detects the changes in a specific 
parameter of a target instance and subsequently forwards the collected in-
formation to the micro-controller for processing. Analog to digital converters are 
used to digitize raw analog data of sensors, thus making this convenient for the 
micro-controller (µc) to analyze. The accuracy and sensitivity of a sensor are its 
main features. With the breakthrough in microelectromechanical systems 
(MEMS), micro-sized sensors bearing the least amount of power and cost are 
being developed, and a shift towards the design of disposable, easy-to-use 
sensors is gaining momentum [4]. 

Combining the collaborative power of different function types of wireless 
sensors in order to monitor large target areas has gained popularity during the 
last three decades, and this has grown to be known as wireless sensor networks 
or sensor web. Wireless sensor networks (WSNs) are defined as, “a network of 
sensor nodes that are scattered over a region of interest to sense and collect 
physical, chemical, or biological data patterns that are either spatial or temporal 
in nature and transmits the data to a central station over a communication link 
through the network gateway” [1–3]. A WSN is formed by numerous secondary 
or primary mobile or stationary sensor nodes that are distributed spatially, 
sometimes even left unattended, and laid out in a predefined topological form 
(e.g. mesh or star) to collect designated information and transfer this to a remote 
central storage server for necessary and meaningful end action. Today, state-of- 
art WSNs require less maintenance, deployment constraints, and costs. 
Currently, the WSN domain has motivated a significant amount of growth and 
support in building a number of application-specific software and hardware with 
minimal energy consumption but with routing algorithms, system security, and 
reliability. 

Due to overwhelming characteristics, sensor networks have found their way 
into diverse applications ranging from home, workplaces, environment, defense, 
advanced Industry 4.0, disaster management, intelligent transportation system, 
Agriculture 5.0, and beyond [1], [8]. 

Depending on the nature of WSN deployment, the sensor network can fall 
under the following types [9]:   

• Terrestrial WSNs: a collection of thousands of wireless sensor nodes that 
are placed over the ground in either a planned or random fashion in order 
to monitor the area 
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• Underground WSNs: a type of network in which sensor nodes are buried 
deep inside the ground to collect information, which usually becomes 
costly as additional sensors are used to act as mediators on the ground for 
the transfer of information  

• Underwater WSNs: a network type where many water-resistant sensors 
are placed inside bodies of water and use high energy management, data 
transfer schemas, and protocols. 

3.1.5 MULTIMEDIA WSNS 

Multimedia WSNs are a type of network that is used where wherein the data that 
is required to be detected is of image, sound, or video nature. A number of 
camera or sound sensors are set up over the region of interest in order to capture 
required information. 

3.1.6 MOBILE WSNS 

Mobile WSNs are a type of network that is the most versatile and dynamic in 
nature. These use sensors to detect motion in order to monitor objects that are in 
action on a real-time basis. 

3.2 EVOLUTION OF WIRELESS SENSOR NETWORKS 

The birth of WSN dates back to the Cold War era. The sound surveillance system 
(SOSUS), which was developed by the US Military in the 1950s, was used to 
keep watch on the presence of Soviet Submarines. This was an underwater type 
of network which possessed a hydrophone and an acoustic sensor that is placed 
inside the Pacific and the Atlantic Ocean. SOSUS is still used by the National 
Oceanographic and Atmospheric Administration (NOAA) for marine mon-
itoring. In the 1980s, the conception of Distributed Sensor Networks (DSN) by 
the Defense Advanced Research Projects Agency (DARPA) started to make 
progress. Due to the success of this project, academic institutions like the 
Massachusetts Institute of Technology (MIT) and the Carnegie Mellon 
University were tempted to make WSN popular within the civilian and educa-
tional domain. In the 1990s, an initiative was spearheaded by the University of 
California, Berkley with the blessing of Smart Dust, attained success in the 
development of the compact and affordable MEMS sensor. In the 21st century, 
the DARPA-backed project – namely, SensIT – provided an effort to further 
enhance the capabilities of old bulky nodes. Several industrial and academic 
initiatives were taken up to strengthen the introduction of WSN in every day-to- 
day task – for example, the Center for Embedded Network sensing (2002), 
Zigbee Alliance (2002), NASA Sensor Webs (2001), among others. Today, an 
era of powerful versatile nodes has evolved with a drastic decrease in size and 
cost but with a corresponding increase in performance and availability [11], [12]. 
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3.3 INTRODUCTION OF WSN IN AGRICULTURE 

Agricultural practices have constantly been evolving since the First Agricultural 
Revolution. The birth of variable rate application technology in the traditional 
agricultural setup and the use of GIS- or GPS-based tools truly paved the path for 
precision agriculture practices. PA has rapidly flourished worldwide and has 
slowly started to embrace new technologies that were rather autonomous in 
nature. In the late 1990s, the inception of sensors in daily life tasks was at its 
peak, and researchers began to use and benefit from the application of sensors for 
precision agricultural practices. Many initiatives that were executed before were 
as [15–19] and many more. Until the end of 2018, the sensor-based agriculture 
market amounted to US$1.23 billion globally and is expected to rise to US$2.56 
billion by 2026, at a Compound Annual Growth Rate (CAGR) of 11.04% [20]. 

3.4 FEATURES OF AGRICULTURALLY BASED SENSORS 

WSN design, deployment approaches, and features for the agricultural sector are 
not notably different from the general WSN scenario; however, many con-
siderations must be taken into account before making the right decision in terms 
of technology to use. Some important factors include [20]:   

• Spatial Scale: What is the size of the field to be monitored (e.g. locally in 
terms of hectares or square meters and globally in the cases of large 
regions)?  

• Time Scale: How long will the area be monitored (e.g. yearly, weekly, or 
seasonal)?  

• Spatial Variability: What is the rate of change in the spatial scale of the 
area under observation (e.g. dense or sparse)?  

• Time Variability: What is the rate of change in features of the area to be 
monitored (e.g. slow or fast)? 

• Responsiveness: What is the nature of the information that is to be pro-
vided to the farmer (e.g. real-time or offline)?  

• Accessibility: How easily accessible is the location?  
• Non-Intrusiveness: Should the node placement be visible, hidden, or non- 

interfering with other systems?  
• Deployment and Maintaining Cost: What is the cost for the maintenance 

and deployment of the system? 

The deployment of a WSN can be random or structured depending on the 
coverage and connectivity of the nodes of the network. Various techniques, like 
geometric principles, can be employed in order to compute the distance among 
the nodes (i.e. the source) and between the source and the central storage sink for 
optimal placements within a structured network placement; however, this is not 
the case for random placement fashion. In an agricultural WSN setup, hetero-
geneous or similar types of nodes can be placed, and these can be mobile in 
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nature or location-aware (e.g. GPS-enabled). Each node senses the required data, 
either in digital or analog form, and forwards this to a central sink or another 
node with the help of predefined software or hardware rules over a secure 
communication channel for interpolation and generation of relevant outputs. 
Remote users can use the internet to control, monitor, and observe each action 
based on the inputs from the sensor data. Different sensor application approaches 
have been introduced in PA and are based on the following requirements: remote 
sensors, networked info mechanical systems (NIMS), and embedded networked 
systems (ENS). In a distributed sensing environment, NIMS or remote sensors 
can support a farmer in dealing with the rather dynamic and unpredictable nature 
of the farm, and ENS or ground-based sensors are more economical and able to 
provide site-specific information although not quite versatile [21]. As observed 
in the general sensor network, agricultural WSN consists of a coordinator (i.e. a 
sink which governs the entire network), routers (which route information), and 
end devices (i.e. the source sensor nodes). The design and deployment dimen-
sions for WSN in agriculture are conducted by the following technical char-
acteristics of WSN:   

• Wireless Networking: WSNs are capable of measuring high variability in 
terms of both time and space, thus making the information accessible on a 
real-time basis. Furthermore, the wireless nature reduces installation costs 
and power consumption.  

• Compact Size  
• Low Cost  
• Reliability  
• Mobility  
• Security  
• Low Energy Consumption  
• Web-based Data Management: Storage, mining, and processing of 

gathered data are crucial for the monitoring system. Such extensive and 
important data can either be saved on the internet or delivered to the 
farmer. Various other web-based platforms for collecting and displaying 
geographical data exist – for example, Global Sensor Networks (GSN) and 
SenseWeb [22], [23]. 

Research in WSNs is aiming to overcome the above constraints by developing or 
improving protocols, algorithms, software, and hardware. 

3.4.1 COMMUNICATION STANDARDS AND PROTOCOLS 

In the world today, different wireless technologies and standards are used for 
Wireless Sensor Networks (WSN) based on specific needs for connectivity – 
namely, the availability of power (battery-driven or otherwise), local radio fre-
quency regulations, the density of sensors, distance to the sensor, the frequency  
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that sensors need to be read, the amount of data, the infrastructure, and beyond. 
The use of battery- or solar-operated sensor networks for monitoring vast 
agricultural fields demands the use of reliable, secure, cost-effective, and low- 
powered connecting technology for the transmission of data from the source 
node to sink nodes via a gateway (i.e. a bridge between two networks). WSNs 
tend to use license-free communication frequencies or Industrial, Scientific, and 
Medical (ISM) Band frequencies. The IEEE 802.15.4 working group provides a 
standard for power-constrained device connectivity and commonly sensors use 
one of these standards for connectivity such as Zigbee, Thread, WirelessHART 
[24], MiWi, and 6LoWPAN. Other prevalent technologies include WiFi, 
Bluetooth, General Packet Radio Services (GPRS)/3G/4G, WiMAX, Z-Wave, 
RuBee, RFID, ANT, laser, infrared, and Wibree. 

Zigbee is the most renowned communication standard that is used in agri-
cultural application monitoring. It is simple, affordable, and consumes less 
power as compared to WiFi and Bluetooth, with a defined rate of 250 kilobits per 
second and a transmission range of 10–100 meters [25], [26]. 

3.4.1.1 WiFi 
WiFi is an acronym for Wireless Fidelity. It is a trademark of the non-profit WiFi 
Alliance and family of wireless networking technologies, based on the IEEE 
802.11 family of standards, and is commonly used for connecting devices in a 
local area network (LAN) and internet access. Furthermore, WiFi is another 
common technology utilized in agricultural sensor devices, especially drones. 
WiFi uses mostly the 2.4 gigahertz (120 mm) ultra high frequency (UHF) and 5 
gigahertz (60 mm) super high frequency (SHF) industrial, scientific and medical 
band (ISM) radio bands. It has a transmission range of about 20 meters when 
used indoors, and 100 meters or 490 feet when used outdoors. It can achieve 
speeds of over 1 gigabit per second (Gbit/s). 

3.4.1.2 Bluetooth 
Bluetooth is a low-powered and less expensive communication protocol based 
on the IEEE 802.15.1 standard. It has a coverage of 8–10 meters with a data rate 
capacity of 1–24 Mbps. The ubiquitous nature of Bluetooth makes it markedly 
suitable for use in multitier agricultural applications [27]. 

Bluetooth Low Energy (BLE) was introduced by Nokia in 2006, and Wibree 
also announced Baby Bluetooth [28], but this was later merged with the 
Bluetooth standard version 4.0. in 2010. It uses the 2.4GHz ISM frequency band 
[28], [29]. 

3.4.1.3 GPRS/3G/4G 
GPRS is a packet-based wireless communication service for Global System for 
Mobile (GSM)-based cellular phones. Data rates from 56 up to 114 Kbps for 2G, 
and this service guarantees internet connection for mobile device and computer 
users. With the introduction of 3G and 4G, third and fourth generations provide 
higher data rates of 200 Kbps and 100Mbps to 1Gbps in 3G and 4G respectively. 
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This allows users to interact with multimedia websites and similar applications in 
real-time while using available mobile devices and computer systems. This type 
of technology is not only universal and readily available to every average person, 
but it also aids in real-time tracking and monitoring of fields and crops. Finally, 
the Short Messaging Service (SMS) is one of the best features of this technology 
[24], [30], [31]. 

3.4.1.4 WiMAX 
Worldwide Interoperability for Microwave Access (WiMAX) is a wireless 
communication standard that is dedicated to the interoperable advancements in 
the IEEE 802.16 standards family. WiMAX is purported to provide a data rate of 
0.4–1Gbps on immobile devices, and the transmission range for this technology 
is 50 kilometers. It is more energy-efficient compared to 4G Long-Term 
Evaluation (LTE) and Evolved High-Speed Packet Access (HSPA + ). 
WiMAX, because of its range and speed, is used as a satisfactory replacement for 
other technologies in crop monitoring systems, real-time examination of remote 
sensor-operated irrigation, and spray systems [32]. Table 3.1 provides more 
insight into the characteristics of these available communication technologies. 

3.4.2 SPECIFIC HARDWARE REQUIREMENTS 

At the hardware level, new designs are being introduced in order to scavenge 
energy from the surroundings. For example, solar cells are embedded into nodes 
to absorb the sun's energy and convert it into electrical energy. Multiple hard-
ware adjustments have been incorporated depending on the working status (e.g. 
off, active, idle) of each of a node's components so battery power is conserved. 
Only the specific components that are required to be active at a particular time 
are on. Besides the basic components of a sensor node, the competition among 
various sensor platforms has thronged the market, differing in cost, functioning, 
or ease of use. Interoperability among all of the heterogeneous platforms is not a 
serious issue following the use of heterogeneous sensors. Platforms like Arduino, 
Raspberry Pi, TelosB, SunSPOT, LOTUS, IRIS, and MICAz are popular within 
agricultural research and practice. Further commercial development of hardware 
for sensors from companies such as Sensirion, Libelium, Decagon, XBee, 
METER, Intel, and Qualcomm has resulted in highly innovative, multipurpose, 
diverse coverage areas, and cost-effective sensor designs. Readers can refer to 
these sources for an extensive study of different types of sensors used in a vast 
number of agricultural activities [33–36]. 

Arduino is an exhaustive platform that spans across software and hardware. It 
is called a breakout board, where sensors or actuators are wired using pins called 
jumper wires on a breadboard and are programmed using Arduino IDE. It comes 
with a microprocessor and is, therefore, referred to as a tiny computer. Raspberry 
Pi is another common Linux-based board that is used to connect several sensor 
devices under one platform. Such boards can readily be purchased from the 
market for hands-on work and at the amount of a mere few dollars. In addition, 
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the NodeMCU is board-based on the ESP8266 micro-controller. This board 
comes with WiFi and is budget-friendly and is freely available on Amazon and 
eBay. This WiFi-enabled board helps in developing and testing projects as well 
as sending data over WiFi to a cloud or other storage servers. 

3.4.3 SPECIFIC SOFTWARE REQUIREMENTS 

The software design for sensor nodes usually needs to be accelerated, robust, 
fault-tolerant, occupying a small memory capacity, and bears high energy op-
timization for the evaluation of dynamic environmental data. The software 
needed for the nodes belongs to three categories: 

The Operating System: This handles operations like booting and the general 
management of the overall functioning of the node. Tremendous research has 
been carried out in this area in terms of support for real-time applications, 
scheduling, computation, and memory requirements [37]. Some widely used 
operating systems for sensor nodes are:   

• TinyOS: An open-source, component-based, application-oriented, and 
low-power consuming operating system for an embedded system such as 
WSN that comes in a size as small as 400 bytes. It is written in nesC 
language and was released in the year 2000 as a joint effort between the 
University of California, Berkeley, Intel Research, and Crossbow 
Technology. The latest version is 2.1.2 [38].  

• Contiki: An open-source and portable operating system that is relatively 
small in size and was developed by Adam Dunkels in 2002. It is an event- 
driven OS written in C with a GUI and consumes only 2kb of RAM and 
40kb of ROM. It supports Internet Protocol connectivity as well as IPV6 
addressing [39], [40], which, in turn, made it more popular. The most 
recent version is 3.0. Moreover, it comes with the world’s smallest web 
browser, and micro-controllers from TEXAS Instruments and Atmel use 
this in their boards.  

• Nano-RK: An open-source, Real-Time Operating System (RTOS) [41] 
for WSN that is related to micro-controllers from the Carnegie Mellon 
University. Nano-RK reinforces multitasking, networking, and priority- 
based request processing. The term “nano” implies that it is small – 
needing only 2kb of RAM and using only 18kb of ROM – while “RK” 
stands for resource kernel. It supports both critical and non-critical real- 
time applications. It is written in C and runs on the Atmel-based FireFly 
sensor networking platform – the MicaZ motes as well as the MSP430 
processor [42]. 

• Mantis: An open-source embedded operating system for wireless mi-
crosensor platforms. MANTIS earned its name from the MultimodAl 
System for NeTworks of In-Situ Wireless Sensors. It is written in C as 
well. It is lightweight and requires less than 500 bytes of memory. A big 
part of the design features of MOS is its flexibility in the form of cross- 
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platform support and the ability to test on PCs, PDAs, and different 
microsensor platforms. It upholds remote management of in-situ sensors 
through dynamic reprogramming and remote login and advanced sensor 
OS features like multimodal prototyping, dynamic reprogramming, and 
remote shells. MANTIS is still in its growing phase, and a number of 
improvements need to be done in terms of power management as well as 
certain key factors, although some support for real-time applications is 
also present [43]. 

The chain of the introduction of an application-oriented operating system for 
WSN is currently developing and more is to be added to the list in the future. 
Other WSN operating systems include OpenTag, LiteOS, Raspberry Pi OS, 
ERIKA Enterprise, and more. 

Besides an operating system, a sensor node is often customized by using 
certain proprietary or free software as required to be used easily by a non- 
technical person. In this case, a range of software programming languages and 
developmental tools are utilized. Some types of simulation software – such as 
NS2, Cooja, OPNET, TOSSIM, MATLAB, etc. – are also used to replicate the 
behavior of large WSN before actual deployment. Such software can either be 
sold with or without hardware by the company, and these provide an interface to 
program the micro-controller by using one of the most common programming 
languages such as “C,” “Python,” etc. Software like Excel, Python, and R are 
used to analyze the sensor data and draw meaningful conclusions to be able to 
study the pattern of data. LabVIEW and Arduino IDE are a few examples of 
popular sensor programming and circuit setting software. 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a 30- 
year-old commercial tool by National InstrumentsTM that is used for engineering, 
configuring, testing and controlling hardware, and enabling rapid data insights. 
The latest version of LabVIEW NXG is capable of smart real-time testing, quick 
automation of hardware, customizing tests that are tailor-fit to one's specifica-
tions, and easy viewing of measurement results from virtually anywhere. 
Measuring and designing systems with sensors and actuators has become quite 
convenient with LabVIEW [44], [45]. 

Arduino IDE: The Arduino Integrated Development Environment is the most 
common open-source and user-friendly developing environment. Writing and 
uploading code to the Arduino boards or other cross-platform boards like 
Nanonode. Nanonode  and the environment is written in Java and is based on 
processing and other open-source software. The current stable version is 
ARDUINO 1.8.12. There is an ideally defined list of alternatives to Arduino 
IDE, and the user is free to choose from this. These are comprised of Eclipse, 
Visual Studio, or IntelliJ, Programino, embedXcode (for Macintosh OS), 
Ktechlab, Codebender (cloud-web based platform), Visual Studio + Visual 
Micro (Microsoft Visual Studio), Zeus IDE, Atmel Studio, and ArduinoDroid 
(for Android platform) [46–48], among others. 
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Data storage and management software (e.g. MongoDB, NoSQL, and more) 
and other cloud-based platforms (e.g. Hadoop, Oracle, Amazon, Google, among 
others) play a vital role in preserving voluminous information for future possible 
references. 

Power management issues are pertinent at the software level as well. This is 
explored through minimizing the communication and messaging overheads with 
the help of enhancement in communication and data forwarding algorithms. 
Duty sharing scheduling schemes, smoother terrain, short distances from the 
source to sink, and time synchronization among the nodes have significantly 
helped in solving power imbalance within the network. 

3.5 TYPES OF SENSORS USED FOR WSN  
AGRICULTURAL SYSTEM 

In an agricultural scenario, a WSN system consists of a group of biochemical sensors 
that are either analog or digital, as well as actuators. Actuators are mechanical or 
electro-mechanical devices that are used to control and manage a function or a 
system, such as the opening or closing of a valve. Actuators are operated electrically, 
manually, or by air or hydraulic pressure. An actuator can be linear or rotary, and it 
plays an important role in coordination with various sensors that are positioned in an 
agricultural field – such as automated irrigation systems or variable rate applications. 
Erdmann Corp., Hansen Motors, E-Motion, Inc., Harmonic Drive, LLC, Bishop- 
Wisecarver Corp., Baelz North America, Pacific Industrial Service Co., Micromatic 
LLC, OTP Industrial Solutions, and Island Components Group, Inc. are some of the 
leading manufacturing companies of actuators [49]. 

Each application-oriented sensor is used for monitoring different entities – 
like moisture, rain, temperature, etc. – that work with the defined architectural 
principles. Sensors can be classified into roughly three categories [50]:  

1. Passive, omnidirectional sensors 
These types of sensors are capable of measuring a physical quantity at the point 
of the sensor node in the target field. These merely serve the purpose of de-
tecting and do not manipulate or alter the environment by active probing. Some 
examples of such sensors are thermometer sensors, light sensors, vibration 
sensors, humidity sensors, chemical sensors, and smoke detectors. Power is 
required to convert the analog signal into digital. Also, the measurements taken 
by these sensors do not involve the notion of “direction.” These sensors are 
rather common and are used in automation tasks for sensing.  

2. Passive, narrow-beam sensors: 
In these types of sensors, there is a chiseled notion of the direction that is 
taken into consideration while taking the measurements. For example, a 
camera or GPS sensor can take measurements in a particular direction.  

3. Active sensors: 
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This group of sensors actively probes the environment – for example, a sonar, 
radar sensor, or certain types of seismic sensors. 

With the popularity of the use of sensors in daily life, a new and innovative 
featured bulk of sensors is added to the basket every day. Application-specific 
sensors were specially designed in order to suit the needs of the agricultural fra-
ternity. The following items are the sensors that have discovered their place in one or 
more operations of an automated PA setup. Any heterogeneous setup of these sensor 
nodes will subsequently form any of the WSN types (e.g. terrestrial, underwater, 
hybrid, etc.) that can help a farmer in performing various, important functions in the 
field. Depending on the quantity being measured by the sensor, the following are 
some of the sensors that have been applicable in precision farming: 

3.5.1 OPTICAL OR LIGHT SENSORS 

This is a group of passive sensors that are able to generate output by detecting 
modifications, refraction, or reflection in the electromagnetic spectrum or visible 
light and which ranges in frequency from “infrared” to “visible,” up to the 
“ultraviolet” light spectrum. These types of sensors identify light energy or the 
light photon into electrical signals (i.e. electrons). Light sensors are usually also 
referred to as photoelectric devices or photosensors. Phototransistors, photo-
resistors CMOS sensor, contact image sensor, electro-optical sensor, flame de-
tector, infrared sensor, LED as a light sensor, light-addressable potentiometric 
sensor, fiber optic sensors, optical position sensor, thermopile laser sensors, 
photoelectric sensor, scintillometer, and photodiodes are some of the more 
prevalent types of light intensity sensors [49], [51]. 

3.5.2 ELECTRO-CHEMICAL SENSORS 

Electro-chemical sensors are mobile electronic devices that determine changes in 
current, voltage, or the presence or composition of gas or liquid chemicals, and 

FIGURE 3.8 Grove Sunlight Sensor [51].  
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these convert the readings into visual outputs. A chemical sensor based on the 
recognition of biological material is called a biosensor. A biosensor is an analytical 
device that detects the presence of a chemical substance that is formed through 
interaction of a biological component – for example, tissue, microorganisms, 
organelles, cell receptors, enzymes, antibodies, nucleic acids, and beyond. Electro- 
chemical biosensors may be classified into any of the succeeding categories: am-
perometric biosensors, potentiometric biosensors, impedimetric biosensors, and 
voltammetric biosensors. Other categories of biosensors include optical biosensors, 
wearable biosensors such as the SmartWatch heart rate monitor, thermometric 
biosensor, and piezoelectric biosensors [52], [53]. The first “true” biosensor was 
developed by Leland C. Clark, Jr. in 1956 for oxygen detection. Biosensors bear a 
great scope in precision farming when it comes to monitoring soil microorganisms, 
water toxicity, disease detection, and environmental monitoring. An emerging area 
of interest is where sensors are designed to direct surveillance of the airborne or 
other genetically modified organisms (GMO) disease-causing agents [54]. Such 
nodes are efficiently designed to detect quality, ripening, and yield prediction on a 
real-time basis. For example, M. Croceipes exposes caterpillars attacking cotton 
crop; Graphene Sensors can detect the presence of a virus thus can help in iden-
tifying viral plant disease-causing agents [55] 

3.5.3 ELECTRO-MECHANICAL SENSORS 

Devices that work on the principle of electro-mechanics and include both 
electrical and mechanical components in carrying out functions are referred to as 
electro-mechanical (EM). Mechanical action (motion) will result from the 
electric energy or vice versa. The electro-mechanical sensor market for agri-
culture includes sensors like pressure, flow, motion, level, leak, or accelerometer 
sensors among many more. 

Pressure sensors are electro-mechanical devices that detect forces per unit 
area in gases or liquids and provide signals to the inputs of control and display 
devices. 

Motion sensors are electronic devices that can recognize movement. 
Level sensors are electro-mechanical devices that are used for determining the 

level of liquids, gases, and/or input signals to the inputs of control or display 
devices. Leak sensors are electronic devices used for identifying or monitoring 
the unwanted discharge of liquids or gases. Gas sensors fall in this category, but 
more accurately for CO2, H, O2 gas detection. Such sensors have been extremely 
useful in revealing the amount of gas in cereal storage units [56]. 

Flow sensors ascertain the movement of gases, liquids, or solids. These 
sensors mostly use ultrasonic principles for the detection of events. 

3.5.4 LOCATION OR PROXIMITY SENSOR 

Proximity Sensors are electronic devices that are used to detect the presence of 
nearby objects while omitting any point of contact. A proximity sensor can 
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detect the presence of objects usually within a range of up to several millimeters, 
and, in doing so, produce a usually dc output signal to a controller. The different 
types of proximity sensors include inductive proximity sensors, capacitive 
proximity sensors, ultrasonic proximity sensors, photoelectric sensors, hall-effect 
sensors, and more. 

As their name implies, location sensors distinguish the position of something. 
These types of sensors provide “positional” feedback. The position is determined 
either by using the concept of “distance” or “rotation.” Both linear or rotational 
sensor nodes are available in the market [57]. 

3.5.5 WEATHER AND MOISTURE SENSOR 

The water content that is present in the soil is referred to as soil moisture. Several 
methods like the gravimetric method, nuclear method, and dielectric method are 
used to measure soil moisture. In the dielectric approach, several probes are 
created to measure the dielectric constant under the working principles of the 
time-domain reflectometry method, resistivity method, capacitive method, and 
frequency domain reflectometry. Examples of such probes include the 
WatermarkTM Sensor and Gypsum Sensors (US$2–30), ECH20 (US$80), and 
TDR Probes (US$500–1000). 

Temperature sensors detect thermal parameters. A temperature sensor typi-
cally relies on an RTD or thermistor to measure the temperature of gases, liquids, 
or solids and convert this into an output voltage. 

Humidity is the presence of water in the air. Humidity sensors work by de-
tecting the water in the air according to the changes in electrical current. There 
are three basic types of humidity sensors: capacitive, resistive, and thermal. All 
of these three types will track minute changes in the atmosphere in order to 
calculate the humidity in the air [58]. Rain, leaf wetness sensors, and many more 
exist in this category. 

3.5.6 VISION AND IMAGING SENSORS 

Vision and imaging sensors are devices that detect the presence of objects or 
colors within their fields of view and convert this information into a visual image 
for display. CMOS Sensor and other camera sensors are examples of this class. 

3.5.7 SMARTPHONE-BASED SENSORS 

These types of sensors are present in our smartphones – for example, ambient 
light sensors, touch sensors, gyroscopes, accelerometers, etc. As many precision 
farming operations – such as fertilizer application, soil study, irrigation re-
quirements, etc. – involve the use of mobile phones, such sensors easily come in 
handy, and a farmer need not purchase extra sensors if he is able to get updates 
about his crops from a remote sensor network [59]. There is a distinctive and vast 
range of sensor devices, and everyday need-based innovative devices are added 
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to the list [60]. Due to the tremendous amount of examples on the topic, dis-
cussing and mentioning each device is out of the scope of this book. 

3.6 INTELLIGENT SENSORS VERSUS SMART SENSORS 

The concept of smart sensors and intelligent sensors was first introduced by 
NASA [61] in the process of developing a spaceship, and this successfully 
created a product in 1979. Spaceships and similar rocket testing require a sig-
nificant number of sensors to detect data such as temperature, position, velocity, 
and altitude. Sensors called “smart sensors” have a microprocessor, a sensor, an 
analog interface, and an analog to digital converter (ADC) that are used to 
identify changes and parameters, whereas “intelligent sensors” are referred to as 
sensors that have various intelligent and independent functions such as self- 
testing, self-validation, self-checking, self-diagnosis, self-adaptation, self- 
identification, self-calibration, self-compensation, among others [62–64]. These 
two types of sensors, thus, only differ in terms of type of function and hardware 
components. The features of intelligent sensors include:  

1. High precision  
2. High reliability and high stability  
3. High signal-to-noise ratio and high resolution  
4. Strong self-adaptability  
5. Higher performance and price ratio  
6. Sufficient amount of storage capacity to store high-quality data 

3.7 IMPACT OF THE WIRELESS SENSORS ON  
TRADITIONAL AGRICULTURE 

The increase in food production is a growing present-day need. Indeed, there are 
many challenges in producing a surplus amount of food from the field. This will 
lead to overexploitation of the current resources of arable land; therefore, tre-
mendous use of agrochemicals has become a source of hope for the farmer who 
intends to grow more food. However, this habit will lead to regretful effects on 
the environment. The science and engineering associated with the use of ad-
vanced electronic technology in traditional agricultural practices revolves around 
the increase in productivity in a sustainable way but also with a decreased burden 
on the environment. An array of eco-friendly networked sensors will serve as the 
foundation, and this will help in elucidating critical spatio-temporal patterns of 
the field, trends in climate, plant ecophysiology, and hydrology, thus recording 
the response and actuating an automatic response in a real-time fashion and at a 
minimal cost. Remote sensing that interprets information indirectly from the 
electro-magnetic spectrum and satellite motion that is dependent on the fre-
quency of data has made RS rather inconvenient for real-time and continuous 
monitoring of farms [65]. For example, a small number of sensors will cover an 
area, as in one sensor per 100 meters by 100 meters. Precision agriculture is an 
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emerging area, where sensor-based technologies have foreseen a good scope and 
form from the fundamental element of a PA setup. Monitoring and managing the 
functions of a field based on the information about spatial and temporal crop 
variabilities hold vital importance. Through the adaptation of intelligent or smart 
sensors in a farm, a platform has been provided for the merging and collaborative 
working of other hi-tech machines or tools for optimized production. Scheduling 
the farming tasks based on the site-specific inputs from sensors has ensured both 
agricultural production quantity and quality. Monitoring either acres of land or a 
small greenhouse with high resolution and multiple angles using a camera or an 
optical sensor is now possible. Accurate and early predictions of yield, disease, 
or other critical alerts regarding the soil or crop health have provided imperative 
support in minimizing loss and damage. These functions have made farming less 
cumbersome and more fun for people [66]. 

3.8 SENSOR BASED VARIABLE RATE APPLICATION 

The inputs for crop or plant growth, whether in a vast or small area of farmland, 
depicts high macroscopic variability. Uniform distribution of fertilizers, water, 
chemical, or other inputs is not always required, as this will lead to cost burdens or 
wastage of resources and, hence, more ecological and economical burdens. 
Therefore, the concept of SSCM and variable rate application evolved in precision 
farming for determining a precise amount of inputs to crops at a definite time. The 
definition of site-specific crop management practice employs a strategy of meeting 
and managing the requirements of a specific crop on the basis of its need. The 
application-specific sensors installed on a farm to read designated parameters or 
conditions of a particular crop will facilitate and call for necessary requirements 
and demands for that particular crop on a real-time basis. The call for requirements 
can either vary spatially (i.e. in terms of space or area) or temporally (i.e. in terms 
of time). Sensors are the perfect and thorough choice to study such dynamic nu-
tritional provisions behavior of agricultural setups because they provide an ac-
curate measure of variability in real-time, and this is not possible with technologies 
like RS, GIS, GNSS, GPS, etc. Variable rate application has become useful in the 
application of fertilizer, herbicide, water, etc. [67–70]. 

3.9 APPLICATIONS OF WSN IN PRECISION AGRICULTURE 

Data from sensors can provide meaningful insights into the flowering seasons, 
the effect of biotic and abiotic factors, harvesting, and many more pertinent 
topics without harming plants or crops [71]. A sensor network can be placed on a 
single Chinar tree to map the microclimatic differences over a single tree in order 
to study the growth interactions of the tree. 

Crucial future estimations about the crop on a real-time basis are a vital part 
of the warning or forecasting systems. When stored in a database, the gathered 
information can work as a backbone for high-end analytics and can provide 
suggestions for the betterment of the workflow. Agricultural statistics will be 
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more accurate, thus the decision-making process reflects this as well. The ap-
plication of sensors in PA ranges from sensing of biomass, canopy volume, crop, 
soil nutrients, and properties, water content, yield, disease and pest outbreak, and 
many more. The effective combination of sensors with other technologies – such 
as remote or satellite sensing, machine learning, AI, and benefit from cloud 
computing services have actually transformed the traditional way of farming into 
something incredibly more productive. 

3.9.1 SOIL ANALYSIS AND CHARACTERISTICS 

Several techniques like Near Infrared Radiation (NIR), MIR and Raman spec-
troscopy, spectral libraries, electrodes, thermal imaging, fluorescence kinetics, 
and electromagnetic radiation are available for analyzing certain properties like 
macro-nutrient presence (K, N, and P), moisture level, temperature, and com-
paction, for instance. Following the working principles of these techniques, 
many sensor devices have been developed [72], [73]. 

3.9.2 YIELD SENSING 

When combined with proximal ground information from the sensors, airborne 
imagery and remote sensing are utilized to feed and build machine learning models 
to predict the yield of a certain crop for that season, the monitoring of harvesting 
time, and each growth stage for remotely located crop sites. This application is still 
in the developing stage, and much work has yet to be done[74]. 

3.9.3 WEED MANAGEMENT 

With the help of thermal imaging cameras and fluorescence-based sensors and 
mapping, real-time weed identification is useful in proximal differentiation and 
targetting of automated weedicide-spraying machines. Image and color-based 
sensors incorporated in UAVs or robots have positively assisted in crop and fruit 
assessment for harvesting based on ripeness. Sensor-based weed control reduced 
the volume of herbicide applied by 63%–85% relative to a uniform spray ap-
plication [75], [76]. 

3.9.4 DISEASE DETECTION AND CLASSIFICATION 

For healthy and good quality production, the onset of pathogen infection can be 
facilitated with the use of sensors for monitoring the meteorological or other 
biotic components of a particular crop. Chlorophyll, leaf area index, leaf wet-
ness, biosensors, or pH sensors have aided in the detection or prediction of the 
onset of various fungal or bacterial diseases. Regular application of chemicals 
takes place according to the inputs received and is followed by a manual in-
spection of the farmer. It the domain where the use of sensor technology has 
been extensively used [77]. 
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3.9.5 IRRIGATION MANAGEMENT 

Micro-irrigation methods – namely, drip and sprinkler irrigation – are popularly 
used in site-specific precision watering. With scarcity in water sources, effective 
water management and irrigation systems are essential in order to save this 
precious resource. Dealing with the under- or over-irrigation problems and 
leaching or drying of soil, requirement-based irrigation can be performed using 
Wireless Sensor and Actuators Networks (WSANs). Soil moisture, solenoid 
values, temperature, and pressure sensors are significant in monitoring the irri-
gation operations [33], [78–81]. 

3.9.6 GREENHOUSE MANAGEMENT 

A greenhouse is a controlled environment where plants are grown irrespective of the 
surrounding natural conditions. In a greenhouse, every input stimulus has to be 
accurate and precise. The utilization of sensors such as temperature, light, humidity, 
airflow, CO2, and irrigation sensors helps to create a more propitious environment 
than that of outside, hence, generating more productivity. Remote monitoring of the 
actuation devices and other sensors over wireless communication links, 3G, WiFi 
has added more ease as well. This type of setup can be installed in the harvest 
storage buildings to monitor the crops or fruit health [82–84]. 

3.9.7 WEATHER MONITORING 

Weather stations with different weather monitoring sensors installed such as tem-
perature, rain, humidity, moisture, wind speed, and pressure sensors provide real- 
time forecasts. Based on these predictions, a farmer can plan his farming activities, 
thus rendering more benefits. Strategizing irrigation, fertilization, sprays, evasion of 
frosting and drought situations, harvesting and transportation, storage of crops, and 
livestock management will become conducive. Weather changing trends and alerts 
for specific locations are available and synced to the farmer's mobile phone or 
computer system through certain APIs or software for immediate action. 

Other prominent uses of sensors are finding a place in agricultural drones and 
machinery and crop transportation and logistics. High-end robots or drones use 
different types of sensors for their practical functioning. The application areas of 
tiny embedded microscopic sensors with reliable wireless communications and 
low-cost powerful sensors in agriculture are only limited by our imagination, as 
the list goes on. 

3.10 SECURITY ISSUES AND CHALLENGES FOR  
WSN IMPLEMENTATION 

Undoubtedly, there are endless benefits and uses of WSN procurement in pre-
cision farming. Utilizing advanced technology such as WSNs will manage the 
land, reduce waste, and increase productivity. This will not only increase 
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resources mobilization, but will also facilitate and promote public/private part-
nerships' access to the delivery of real development with agriculture as a main 
source of income in agriculturally backward countries. 

Although wireless sensor technology is an exceptional choice for agriculture, 
there is still a notable amount of challenges that delay its deployment. These 
challenges are desisting the expansion of sensor nodes in developing economic 
countries, especially in the areas where there is no infrastructure, thus making it 
difficult for nodes to identify connectivity and distribution. 

These challenges can be summarized as the following:  

• Poverty and illiteracy  
• Harsh environment  
• Standardization problems, as there are different available technologies  
• Compatibility for commercial and security reasons  
• Poor IT infrastructure and inadequate technical knowledge  
• Economic impact, as most companies are not ready to risk their business 

and invest in an unstable continent  
• Security issues like corruption of data collected or theft of devices; the 

accuracy and error of free data is a dire need for reliable decision-making 
and is needed less for calibration  

• Complexity of certain stages of the technology  
• Lack of experienced staff  
• Promotion of technical education  
• Minimizing the cost of usage, which is of paramount importance  
• Better enclosures to protect nodes and devices from moisture, heat, or 

other probable causes of damage while exposed outdoors, as well as the 
safe disposal of tear-out devices 

There are many trial projects that are advocating wider use of integrated WSNs 
applications in India and other countries; however, this is still not fully im-
plemented. To empower the use of WSNs in Indian Agriculture, global pol-
icymakers, leaders, researchers, industries, and farmers should unite to initiate 
collectivist opinions in order to result in different real projects. These opinions 
can be filtered out to produce research-based works within institutions and 
subsequently be offered to industries and business corporations. The industry- 
based projects can be simulated and tested within farms across Africa. The 
successful projects can be commercialized to different target groups [85]. 

3.11 CONCLUSION 

The attainment of goals in precision farming with the implementation of sensor- 
based technologies have become accessible with the explosive growth and ad-
vancements in technology. Barriers in the adoption have been overcome with the 
help of farmers and their inclination towards smart farming. A database can be 
created to store this vital information that has been collected, evaluated, and then 
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interpreted to analyze the information for future reference. With growth and cost- 
reduction in high-speed internet and the farmers' excessive use of smartphones in 
managing farming, tasks are growing rapidly. The use of smartphone sensors for 
plant disease detection or other forecasting is of great assistance to the growing 
agriculture sector. The ongoing research in the Internet of Things and the 
Ubiquitous Sensor Network of intelligent sensors has made this technology 
available anywhere, anytime, anyplace, and for everyone. Different ideas can be 
promoted through cooperative research work; the successful strategies can be 
commercialized for small, medium, and large-scale agricultural projects which 
will bolster economic growth. Public/private business partnerships for the in-
clusion of WSN in PA will not only solve food shortages but will also generate 
profit. 
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4 IoT (Internet of Things) 
Based Agricultural 
Systems  

When the desire to gain knowledge outmatches fear of failure, learning becomes easier.  

— Anabia  

4.1 INTRODUCTION 

Over the past couple of decades, the definition of precision agriculture has been 
dynamic due to the introduction of integrated multidisciplinary concepts and 
technologies. With these advancements, precision agriculture has attained a di-
verse character and evolved more sophisticatedly. 

There has always been an increasing demand for production to accommodate 
the growing population. According to FAO, it has been estimated that the world 
population will cross the 9 billion mark in 2050, thus creating a formidable need 
for food and resources. Therefore, an increase in production has developed into a 
Herculean task with the limitation of resources, skilled labor, and arable land. 

We have learned certain notably important lessons from the past which we 
need to charge to experience so that we will have the capacity to overcome or to 
at least mitigate the consequences caused by insufficient knowledge. During the 
20th century, in order to increase productivity, we focused on:  

A. Mechanization  
B. Improved genetics  
C. High inputs 

Some of these factors directly or indirectly caused ill-effects to the soil and 
water, as well as led to extensive deforestation and the corresponding havoc of 
greenhouse gases. 

Currently, around 70% of the water consumption is agricultural, and there is a 
relatively high unsustainable level of chemical consumption which results in un-
stable agriculture. Hence, there is a need for PA with its primary aim being sus-
tainable agriculture. As a flexible and multidisciplinary method, PA has proven to 
be one of the effective solutions to solving imminent worldwide hunger and de-
struction of natural resources. It also integrates with diverse domains in dis-
covering an effective approach to tackle prevailing problems in agriculture. 
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Hence, the definition of precision agriculture has unfolded with time and 
technology. Currently, the highest-rated definition of PA is: 

Precision agriculture is a management strategy that gathers, processes, and 
analyzes temporal, spatial, and individual data and combines this with other in-
formation to guide site-, plant-, or animal-specific management decisions to im-
prove resource efficiency, productivity, quality, profitability, and sustainability of 
agricultural production.  

—The International Society of Precision Agriculture (ISPA) [1]  

4.1.1 INTERNET OF THINGS (IOT) 

The term IoT was coined by Kevin Ashton in 1999, and it represents the col-
lection of data from “things,” subsequently processing it either at the individual 
level of “thing” or a group of “things” in any combination with the help of 
artificial intelligence (usually machine learning) in making efficient decisions 
based on huge data and the position of the source(data). This transformed 
farming into smart farming while, in the case of PA, only the position of data 
was taken into consideration for decision-making (Figure 4.2)[2]. 

With IoT, there is a real-time data transfer to the storage database where a 
pre-installed program makes precise decisions based on data knowledge that it 
has already been trained with and sends the correct information to the user. 
Conventional agriculture has revolutionized into a cyber-physical system (CPS – 
a combination of physical and software components). Hence, smart farming is 

Any THING communication

Any TIME communication

- on themove
- night
- daytime

- outdoor
- indoor(away from the computer)
- at the computer

Any PLACE communication

- between computers
- human to human, not using a computer
- human to thing, using generic equipment
- thing tothing

FIGURE 4.2 ITU Definition of IoT 
Source: ITU, 2006.  
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the evolution of precision agriculture, with IoT as its foundation. IoT has tre-
mendous scope in the agricultural sector, as the tedious job of data collection, 
processing, and analysis to be able to deduce competent decisions minimizes 
human effort, human error, waste of resources, etc. in practical terms. Remote 
monitoring of almost all of the parameters is now possible, and the purpose of 
automation in farming methodologies has become a reality by the virtue of IoT to 
a greater extent. Thus, IoT has reinforced smart farming [3]. 

When we talk about the 4IR, it is a must to discuss the IoT because it is an 
essential subset of it. In general, IoT refers to the assemblage of interfaces and 
modules (i.e. a system or sometimes, the module can itself be a system, hence 
making it a “system of systems”). It consists of devices, a cyber-physical system 
(CPS), and digital machines that are interconnected, bear unique attributes, and 
are capable of computing and data communication over a network using their 
unique network identities. IoT is gaining popularity, because it is flexible enough 
to include the latest types of technology and combine these with the internet [4]. 

It achieved prominence also due to the fact that human efforts were reduced 
by this technology as “human-to-human” and “human-to-machine” interactions 
were eliminated in IoT in terms of data collection, transfer, and processing [5]. 

The basic architecture of IoT consists of three layers, as shown in Figure 4.3: 
The specific uses of the internet for data communication and the inter-

connection of “things” and the characterization of layers are done according to 
the work executed on data (i.e. collection and transfer) from the source and into 
the physical world [6], [7]. 

Many have contributed to the research, development, and design of IoT 
systems by embedding RFID, sensors, and actuators [8]. 

Cisco introduced the term Internet of Everything (IoE) as a system that 
consists of the interconnection of people, things, data, and processes. They be-
lieve that the “network effect” was the main reason why focus on IoE is ne-
cessary. Robert Melancton Metcalfe, who helped pioneer the internet since 1970, 
formulated a law which states that the value of a network is proportional to the 
square of the number of connected users of the system (n2). This was the driving 
force for IoE [9]. 

4IR created a number of opportunities and widened the horizon for various 
academic and technical communities for these to contribute towards international 
development, transparency, and security using IoT technology in the agricultural 
sector [10]. 

With the advancement and upgrade in cyber-physical systems (CPS) and IoT, 
there has been an exponential demand for smart devices and IoT devices [11], as 

IoT platform 

IoT gateway

IoT devices
FIGURE 4.3 Basic IoT Architecture   
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these are considered the main system components that act as a bridge between 
the physical and virtual environments [12]. 

4.1.1.1 What “THING” Refers to in an IoT 
ITU-T Y.2060 prescribes the following definitions to attain a clear perception of 
a “device” and a “thing” in an IoT: 

Device: In regard to the IoT, this is a piece of equipment with mandatory 
capabilities of communication and the optional capabilities of sensing, actuation, 
data capture, data storage, and data processing. 

Thing: In regard to the IoT, this is an object of the physical world (physical 
things) or the information world (virtual things), which is capable of being 
identified and integrated into communication networks [2]. 

After going through a large resource of literature published to date, there are 
three major, general views:  

1. IEEE considers a “thing” simply as any physical object that is relevant 
from a user or application perspective.  

2. Some organizations like NIST, ITU, W3C, IERC, and IETF are in favor 
that a “thing” can be physical or virtual, should have identities, and can be 
integrated into a network.  

3. Edewede Oriwoh and Marc Conrad [13] have done a detailed study for 
defining the “thing” of IoT and have provided a detailed and elaborate 
definition [14]. 

FIGURE 4.4 The Internet of Everything (IoE) [9].  
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Table 4.1 depicts various key attributes of “THING” in various definitions: 
A “thing” must have the ability to interconnect in a network with any spe-

cialized communication protocol and has the processing power to handle that 
communication. The “thing” in IoT may be able to perform certain actions once 
it is commanded, but for that purpose, it must recognize the command and 
confirm its completion. Routers, switches, and gateways are considered as part of 
the network but may also be classified as things [5]. There is a compulsion of 
data for IoT working that can be in the form of anything like data collected by 
things itself. Examples include data that is involved in various agricultural 
sensors like:  

1. Location sensors to determine latitude, longitude, and altitude to a high 
precision which is of immense importance in PA  

2. Optical sensors which use light to measure the soil properties like clay 
content, the quantity of organic matter present in the soil, and moisture 
content of the soil using different spectrums of light (e.g. infrared, po-
larized, etc.)  

3. Electrochemical sensors which are used to determine pH and nutrient 
levels in soil using ion detection  

4. Mechanical sensors that help in finding soil resistance in order to deduce 
the soil properties 

States 
of 

‘�ings'

Physical 

Logical 

Sensors 

Services 

People 

Processes 

Animals 

Data and 
Databases 

FIGURE 4.5 Different States of “Things” [13].  
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TABLE 4.1 
Definitions of a “Thing” in IoT [14]    

Organizations Keywords  

NIST   

• Occurs in physical or virtual space  
• Can be all software, all hardware, or combinations of 

software and hardware 
ITU   

• Is an object  
• Can be physical or virtual  
• Can be identified  
• Can be integrated into a network 

IERC   

• Is physical or virtual  
• Has identities  
• Has physical attributes  
• Has virtual personalities  
• Uses intelligent interfaces 

IEEE   

• Is any physical object relevant from a user or application 
perspective 

IETF(Lee et al.)   

• Can be a computer, a sensor, people, an actuator, a car, 
a book  

• Can be classified as three scopes: people, machine, 
information  

• Can be identified by one unique way;  
• An identified thing is called an object 

W3C   

• Can be a virtual representation of a physical or abstract 
entity  

• Can be connected or not connected  
• Each thing can have one or more virtual representations  
• Can have histories  
• Has identities, rich descriptions, services, access control 

and data handling policies  
• Has URIs 

Oriwoh and Conrad   

• Serves a purpose  
• Can be interconnected  
• Interconnections can be technology or natural methods  
• Has a form or is a set of structures 

(continued) 
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5. Dielectric soil moisture sensors enable identifying soil moisture by detecting 
the dielectric constant(symbol = K) of soil, which is an aspect of moisture  

6. Airflow sensors which work on the principle of analyzing the pressure 
required to pass a particular quantity of air at a known depth to detect soil 
permeability 

7. Agricultural weather stations which contain numerous sensors to de-
termine air and soil temperature, rainfall, leaf wetness, chlorophyll con-
tent, wind speed, dew point temperature, wind direction, relative 
humidity, solar radiation, and atmospheric pressure 

The data involved in the above sensors are quite useful in PA for various tasks 
like recording topography and boundaries which are useful when interpreting 
salinity maps, yield maps, and weed maps in addition to a precise overview of 
the features of the land. IoT aids in the efficiency and performance of the UAVs 
and UGVs in agriculture by making this significantly smarter. Hence, with the 
adoption of IoT in PA, we are certainly going to witness both predicted and 
unpredicted benefits that will significantly improve the agricultural sector. 

4.1.2 IOT DEVICES AND SMART OBJECTS 

The use of cognitive technologies, like computer vision and machine learning, helps 
us to better understand and analyze practical situations, thereby increasing precision 
which is necessary for agriculture in order to acquire improved yield and the efficient 
use of resources. IoT technologies which use cognitive computing (a subset of ar-
tificial intelligence) focus on reasoning and understanding at a higher level and in a 
manner that is analogous to human abilities by correlating huge data (structured/ 
unstructured) from numerous sources like location sensors, optical sensors, electro-
chemical sensors, mechanical sensors, dielectric soil moisture sensors, airflow sen-
sors, etc. to provide certain valuable information to the user and suggest highly 
precise changes or actions necessary to improve efficiency. 

TABLE 4.1 (continued)   

Organizations Keywords   

• Is traceable  
• Can communicate  
• Can be interfaced  
• Can have a physical or logical form  
• Can be living or non-living  
• Can be identified  
• Is tangible or intangible  
• Can be autonomous or non-autonomous    
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It is vital to understand what actually we refer to by the terms that are fre-
quently used in an IoT-based agricultural system so that there is no mis-
conception about terminology like smart object, smart sensor, and IoT “thing.” 
Furthermore, in the upcoming topics, definitions from various researchers 

TABLE 4.2 
Definitions of a Smart Object [14]    

Authors Definitions  

Sterling   

• Space-time, location-aware, environment-aware, self-logging, 
self-documenting, uniquely identified object  

• Provides data about itself and its environment 
Korteum et al.   

• Autonomous physical/digital object augmented with sensing, 
processing, and network capabilities  

• Carries chunks of application logic to make sense of its local 
situation and interact with human users  

• Senses, logs, and interprets what is occurring within itself and 
the world  

• Acts on its own, intercommunicates with each other, and 
exchanges information with people 

Fortino et al.   

• Autonomous, cyber-physical  
• Augmented with sensing/actuating, processing, storing, and 

networking capabilities  
• Metadata model with attributes – identifier, creator, physical 

property, type, device, service, operation, location, 
QoSparameter 

IPSO   

• A specified collection of reusable resources such as physical 
type, static, and dynamic properties 

Lopez et al.   

• Possesses a unique identity  
• Is able to sense and store measurements made by sensor 

transducers associated with it  
• Is able to make its identification, sensor measurements, and 

other attributes available to external entities, such as other 
objects or systems  

• Can communicate with other smart objects  
• Can make decisions about itself and its interactions with 

external entities    
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and organizations have been proposed so as to gain a clear idea of different 
views. 

It should be apparent that an IoT device may not be a smart object at all, 
because, in order for a device to be smart, it needs to fulfill certain conditions. 
Various definitions of smart objects are presented in a tabular form below [1]: 

Table 4.3 illustrates a comparison of the key attributes for smart sensors, 
smart objects, and “things” in IoT: 

4.2 ARCHITECTURE OF IoT 

In order to understand the IoT as well as to discern the processes involved, it is 
necessary to study a general model that describes the elements of IoT at various 
levels [1]. There are several models of IoT which exist today, but, in order to 
fulfill the purpose of this book, the reference models mentioned below are es-
sential from an agricultural perspective. In the year 2014, a joint initiative of 
Cisco, IBM, Rockwell Automation, along with others resulted in the formation 
of a committee which framed the standardized architecture of IoT [15]. This is 
termed as an IoTWF reference model, and the IoT World Forum (IoTWF) is an 
annual industry event that is hosted by Cisco [16]. 

TABLE 4.3 
Comparison of the Key attributes for Smart Sensors, Smart Objects, and 
Things in IoT [14]    

Entity Key Attributes  

Smart Sensors   

• A physical device with network interface  
• Sensing only  
• Local data storage  
• Local data processing 

Smart Objects   

• Physical or virtual objects with network interface  
• Sensing only or with actuator  
• Local data storage  
• Local data processing  
• Interaction with other objects 

IoT “Things”   

• Physical or virtual objects with network interface  
• Sensing and actuator  
• Local data storage  
• Local data processing    
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The key characteristic of this model is that it is centrally controlled; the center 
is usually cloud-to-end points. The flow of data is from endpoints towards the 
center where it is then processed; however, there also might be decentralized 
processing that is, therefore, acting as a cloud service. The division of the model 
consists of seven layers because, when encountering situations wherein its goal is 
to create a customized IoT for a specific purpose, knowing the role of each layer 
along with the interfaces required will aid in the task of easily establishing an 
IoT system. Hence, many institutions can contribute elements for different layers 
while having adequate interoperability. Another benefit of this model is that 
security can be patched at any desired layer specifically [15], and this makes IoT 
simple and approachable [17]. 

These seven layers include:  

1. Physical devices and controllers 
This is the first layer which consists of IoT things, IoT devices, objects, 
smart objects, sensors, smart sensors, and also includes controllers (the 
definitions of which have been discussed in the earlier sections of this 
chapter). Therefore, their main aim is to collect the data, bear the ability to 
transfer this upstream, and be capable of performing commands with the 
help of actuators. 
The example of this layer includes a simple sensor with its driver (both 
hardware and software) [1], [15].  

2. Connectivity/networking 
This layer refers to the connectivity of the IoT entities (IoT things, IoT 
devices, objects, smart objects, sensors, smart sensors, and also includes 
controllers) to the network and includes all of the methodologies, tech-
nologies, and tools to establish connectivity in the IoT system. This in-
cludes both wired and unwired modes of connection in IoT entities as well 
as a control system which is usually a cloud service. 
The decision-making process is not confined to a specific layer/level; ra-
ther, it depends on the situation. For example, if a device is able to make a 
decision locally, then it can perform the action of its own and only notify 
the IoT platform in case of a complex situation. The decision-making takes 
place at many levels in the IoT system, thus making it a “liquid” process 
[1]. 
Thus, the function of this layer is to act as a reliable and secure passageway 
for data and to forward this to the upper layers where filtration, analysis, 
accumulation, and valuable information from this data is deduced. 
Switching or routing is done in this layer and if required, translation and 
coordination between protocols are also possible [15]. This also includes 
security at the network level (e.g. an application of network security policy) 
and may have the feature of networking analytics or self-learning) [17].  

3. Edge/fog computing 
This layer is called the edge layer or fog layer because edge computing or 
fog computing takes place here, and its primary function is data cleaning, 
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aggregation, and processing. In this case, processing may include eva-
luation, formatting, expanding/decoding, distillation/reduction, reduction, 
and/or assessment. 
Its function is to begin the conversion of data into information so that this 
can be further processed and stored at the next level. 
An efficient system should initiate processing nearer the edge so that data 
traffic is reduced, thereby making the system faster to respond in real-time 
[17], [15]. 
Edge computing and fog computing are further discussed in the later 
sections of this chapter.  

4. Data accumulation 
Data generated in the first layer is transferred through a network in the 
second layer, and particular processing takes place at the third level. Up to 
this level, data is considered to be in motion, and the speed of transfer is 
dependent upon IoT system configurations. The processing of data does 
not need to necessarily be in real-time for an IoT application. 
Therefore, the function of this layer is to prepare data for storage – spe-
cifically, the conversion of event-based data to query-based data so that it 
can be retrieved on queries after accumulation.  

5. Data abstraction 
This is also primarily a data-oriented layer. As the size of data hikes up, 
more storage systems are required, and data from different sources is 
sometimes required to be stored separately. Useful datum (singular of 
data) is termed as “information”. Furthermore, an adequate amount of 
information required to turn a decision into “knowledge.” 
The data at this level is aggregated from multiple storage systems and 
made “consistent, complete, and validated” so that it is able to respond to 
a query and return with a valuable outcome [1], [15], [17].  

6. Application layer 

The IoT reference model does not strictly define an application because this 
varies to a great extent. In this case, the information from the fifth layer is in-
terpreted. The application can achieve the desired goal by virtue of its multitude 
of features consisting of services and web platforms. For the development of the 
application, definitive techniques in which recurring software elements can be 
used are preferred so as to avoid the inconvenience of developing new software. 

When the customization of a particular application is not possible, then only 
the end-user can build its application according to the human-machine interac-
tion chosen by keeping this component under focus only. Given below are the 
different purposes which various applications aimed at achieving:  

• Monitoring device data  
• Controlling devices  
• Combining device and non-device data  
• Handling simple interactions (mobile application) 
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• Analytics  
• System management/control center (controls the IoT system itself and does 

not act on the data produced by it) [1], [15], [17].  

7 Collaboration Resources and Processing  

In order to properly benefit from the information achieved from the IoT system, 
it is necessary for it to conclude something valuable. For this purpose, it is 
necessary to have collaboration among resources and processing. People use the 
applications and acquire benefits according to their own requirements. This also 
paves the way for various business opportunities. Thus, people are often in-
volved at this level, including the business sector. 

Some examples include:  

• The workflow management system  
• The DSS (decision support system)  
• The systems for process simulation [1], [15], [17]. 

4.2.1 SIMPLIFIED REFERENCE MODEL OF IOT  

I. IoT Layer – This layer is comprised of:  

a. IoT sensors  
b. Actuators 

II IoT Network Layer – This layer includes all of the networking compo-
nents which help in connectivity and data transfer, as per requirement. It 
includes the following:  

a. IoT gateways  
b. Switches  
c. Routers 

We put fog/edge elements under this heading. The main goal of fog/edge 
computing for the data analysis to take place in closer proximity to the IoT things 
because this makes processing faster and reduces the network traffic. Low la-
tency and quicker responses are its key features. An example of this is IoT 
healthcare.   

III IoT Cloud and Application Layer – This layer helps in data manage-
ment and the processing of such data. It is also responsible for the 
management of IoT devices and the general IoT system [19], [20]. 
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4.2.2 FOUR-STAGE INTERNET OF THINGS ARCHITECTURE 

The plinth for Stage 1 of this architecture is the IoT things that pass a wide range 
of inputs. These inputs help in building a large dataset of linked informational 
context [21].  

I. Stage 1: 
This is the first or the primary stage of this architecture, and it consists of 
sensors and actuators which receive “data or information” from the 
“things.” The aforementioned “data or information” is converted into 
digital form for further processing.  

II. Stage 2: 
Data acquisition systems and internet gateways that carry out important 
functions are commenced in this stage. This works by collecting all of 
the types of data from various input sources and converting this into a 
convenient form for further processing. This stage is also responsible for 
A/D (analog to digital) measurements and control. The IoT gateway is a 
part of this stage that enables communication and, therefore, all of the 
communication data needs to pass through here.  

III. Stage 3: 
This stage is also referred to as the “edge,” and the process here is called 
“edge computing.” The “data or information” from the second stage is 
received through various gateways either by wired or wireless trans-
mission. 
Usually, the edge receives data by wireless modes such as WiFi, LoRa, 
or ZigBee. An important characteristic of good architecture is to process 
data closer to the ends; thus, pre-analytical processing takes place here to 
aid in subsequent processing [22–24].  

IV. Stage 4: 

The final stage of this architecture is where the actual processing is done and 
converges into a cloud. Data analysis, data management, and some data archival 
are its main characteristics. After processing the data, analysis is done according 
to the purpose, and valuable results are obtained which help in control, man-
agement, and decision-making. 

4.2.3 IOT ARCHITECTURE IMPLEMENTED IN AGRICULTURE 

After presenting the general IoTWF reference model with other types of archi-
tecture, it must be clear how the various components and layers coordinate and 
synchronize in order to make an IoT system fully functional [21]. To reiterate, 
the aim of this book is to provide all of the necessary information and knowledge 
to the reader to help him/her in this current scenario where technological 
awareness has turned into a requirement. Until the end of 2018, the sensor-based 
agriculture market stood at US$1.8 billion globally and is expected to rise to US 
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$4.3 billion by 2023 at a Compound Annual Growth Rate (CAGR) of 
19.3% [25]. 

This section will provide all of the essential details of the technical terms that 
we have come across in IoT technology. This shall be explained from an agri-
cultural perspective to facilitate easy understanding. 

The various practically implemented IoT systems to date in the agricultural 
domain can be understood quite easily if studied in three layers of architecture:  

I. IoT Device Layer 
In order to understand the IoT system, the first layer that must be studied 
is one that is comprised of IoT devices – those that we first encounter 
because these devices are intentionally distributed at particular locations 
in the environment to gain inputs [26]. These devices are capable of 
sensing and actuating the physical environment [27]. 
According to a standard procedure or protocol, this collected information 
is transferred to an IoT gateway layer [11], [12]. By virtue of the in-
terconnection of these devices among themselves and the internet, this 
enables the IoT system to use a cloud server along with its services 
which constitutes the third layer of the architecture (i.e. the IoT platform 
layer) [28].  

II. IoT Gateway Layer 
As the name suggests, this layer helps connect the IoT devices layer with 
the IoT platform layer, thereby acting as a “bridge” which can be in the 
form of software or hardware. In simpler terms, it connects the sensing 
and actuating device of the IoT system to various types of platforms and 
applications in a secure manner. Thus, it adds to the overall security of 
the IoT system. The IoT gateway allows the communication of “things” 
in IoT systems such as those commonly found in industries, smart cities, 
as well as in agriculture also, among other things [29]. 
Some IoTs can have gateway-centric architecture when specific M2M 
interactions are needed [30]. 
Presently, there are certain smart IoT gateways that are able to overcome 
connectivity issues in order to join a heterogeneous network, Zigbee 
Adhoc network, cable network, and wireless LAN [31].  

III. IoT Platform Layer 

The IoT Platform layer is not a single layer but rather, a set of layers and is often 
termed as “middleware.” It is a dominating part of the IoT system as it enables 
the following:  

a. Application support to an IoT  
b. IoT device management  
c. Supervised and controlled data flow  
d. Application management system 

84                                                                                    Agriculture 5.0 



Io
T

 D
ev

ic
e

la
ye

r
Io

T
 G

at
ew

ay
 

la
ye

r 
Io

T
 P

la
tf

or
m

 
la

ye
r

• 
C

om
pr

is
es

 o
f I

oT
 

   
de

vi
ce

s
• 

Sp
at

ia
lly

 D
is

tr
ib

ut
ed

• 
Se

ns
in

g 
an

d 
   

ac
tu

at
io

n
• 

T
ra

ns
fe

rs
   

In
fo

rm
at

io
n 

to
   

ga
te

w
ay

• 
En

ab
le

 d
at

a 
   

tr
an

sm
is

si
on

.
• 

A
ct

s 
as

 A
 b

ri
dg

e 
   

be
tw

ee
n 

ne
tw

or
k 

   
an

d 
th

in
gs

• 
Pr

ov
id

es
 a

dd
iti

on
 

   
se

cu
ri

ty
 to

 th
e 

Io
T

 
   

sy
st

em

• 
A

ls
o 

re
ffe

re
d 

as
 

   
M

id
dl

ew
ar

e
• 

Pr
oc

es
si

ng
, c

on
tr

ol
 

   
an

d 
am

na
ng

em
en

t.
• 

M
ak

es
 Io

T
 s

ys
te

m
 

   
op

er
at

io
na

l
• 

A
ct

io
na

bl
e 

in
si

gh
ts

 
  d

ed
uc

ed
 fr

om
 th

is
 

  l
ay

er
.

FI
G

U
R

E 
4.

7 
T

hr
ee

-L
ay

er
 I

oT
 A

rc
hi

te
ct

ur
e 

 

IoT (Internet of Things)                                                                        85 



IoT solution services, management of IoT services, and the automation of IoT 
“things” are only possible due to the IoT platform layer. There are many open 
and proprietary sources available worldwide that boost IoT solutions 
development. 

Examples of IoT platforms include:  

i. Platforms which provide an end-to-end solution  
ii. Platforms that provide connectivity  

iii. Cloud platforms  
iv. Data platforms 

In agricultural IoT platforms, the farmer and subsequently, the developer is 
aware of the problem and opts for such a platform which depends on the type of 
attributes and defined system functions. This should possess the following fea-
tures [32]:  

A. Enablement of necessary data collection  
B. Ability to store and manage the same data  
C. Mandatory provisions for processing data  
D. Applicable analytical models and visualization techniques in order to 

provide meaningful and actionable conclusions 

4.3 BRIEF OVERVIEW OF IoT NETWORK 

In order to ensure maximum benefits from the implementation of an IoT system 
in an agriculture-related domain, general awareness about the IoT network is 
necessary so that implementation, its maintenance, and corresponding security 
become easy for the user even if it is not his/her specialization [15]. It should 
also be clear that the IoT network is comprised of two main parts:  

a. Internet  
b. Edge network 

Both differ in characteristics and also have different functions. Simply put, an 
edge network can be understood as a network of all of the “things” which can be 
anything like sensors in the field, objects, vehicles, instruments, devices, etc. 
which are connected to an IoT system. Each IoT assumes the environment as a 
constraint because it affects the network to be adopted as well as the number of 
nodes and their respective spatial position. For example, sensors deployed in a 
vast area sometimes cannot be powered by a grid. For this specific constraint, it 
should be able to utilize/consume any locally available source. 

All of the parameters in edge networks are bound to the outcome that is 
required by the user and, hence, can illustrate a large deviation in the functioning 
of each parameter. A couple of examples are listed below: 
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a. Data transfer rate: Some sensors usually have a low data rate in an edge 
network in comparison to the one where real-time video is to be trans-
mitted and, thus, involves large data.  

b. Delay in storage and processing: Usually, a large and dynamic delay in 
storage and processing is acceptable in edge network; however, in the case 
of a control application and alarm notification, the delay should be at the 
minimum and constant.  

c. Error rate: This factor is also considered in choosing an application. 

We sometimes refer to IoT applications as a “system-of-systems” as it enables the 
interaction of many independent systems (or nodes) for a rather insightful result [33]. 

Gateways are the nodes that connect the edge network with the internet using 
certain protocols. These help in data communication between edge network 
protocols and internet protocols, as these possess the processing feature and, 
thus, aids in reducing network latency and shifts to processing closer to “things” 
(the concept of edge or for computing) [34]. 

4.3.1 ISO/OSI MODEL AND SIMPLIFIED ISO/OSI MODEL 

ISO stands for International Organization of Standardization which developed a 
conceptual model called the Open System Interconnection (OSI) model [15]. It is 
commonly referred to as the ISO/OSI model that divides a communication 
system into abstraction layers. Since this is a conceptual model, this provides 
knowledge about communication in a network by dividing this into smaller 
layers. There are seven layers in the original ISO/OSI Reference Model [35]. 

Generally, in an IoT network, we utilize the simplified ISO/OSI model which 
consists of five layers, because three layers from the actual model are merged 
into one layer as shown in Figure 4.8 below: 

In an IoT network, the term PDU is often encountered, so further explanation 
for this is fundamental. PDU stands for Protocol Data Unit which are data 
messages used for communication between the layer shown in Figure 4.9 below. 
Depending on the type of data involved, PDU is also referred to as “packet,” 
“datagram,” “frame,” and “segment.” 

4.3.2 SIMPLIFIED ISO/OSI MODEL LAYERS 

Describing the functions of each layer in proper technical terms is beyond the 
scope of this book. Hence, a basic approach has been used to make the reader 
adequately competent to be able to at least implement an IoT system and to also 
ensure its smooth functioning.  

1. Application Layer 

The application layer is primarily related to the exchange of application data that 
takes place at the end nodes and defines the type of message that gets transferred. 
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This layer is actually a combination of three layers in the ISO/OSI model as 
shown in Figure 4.9: 

In the ISO/OSI model, the objectives of the two merged layers are the 
following:  

a. Presentation Layer: data representation and encryption  
b. Session Layer: session establishment, management, and recovery  

2. Transport Layer 

The transport layer's function is to tag an address to various processes that run in 
the application layer. Two commonly used protocols in the transport layer are:  

a. TCP/IP: Transmission Control Protocol  
b. UDP/IP: User Datagram Protocol 

Both protocols have their pros and cons; accordingly, opinions about one being 
better than the other have arisen. 
These protocols are used according to the specific issue that we need to address 
along with other constraints in the IoT system – such as the need for data 
fragmentation (when data is large), data acknowledgment, mode of transmis-
sion used in the system, available energy, required latency, security, etc. [36].  

3 Network Layer 
The network layer's function is in routing which is carried out by 
using two common Internet Protocols (IPs): IPv4 and IPv6. The IPv6 
is the latest version and has advantages over the IPv4. In order to get a 
PDU transmitted, there should be a source as well as a destination 
address that is linked to it as this helps in the routing process. 
In simple terms, we can compare the IP address with the sender and 
the receiver address as that in a conventional post system. 

IPv4: It has 32 bit address size that is usually 
represented in a dotted decimal notation. 
Example: 169.149.42.34 
IPv6: It has a 128 bit address size usually represented in a 

Application Layer

Presentation Layer 

Session Layer 

Application Layer in 
Simplified model

FIGURE 4.9 Merged Application Layer in Simplified ISO/OSI Model  
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hexadecimal notation. 
Example: 2405:205:8d:8d13:9d8b:12e:1328:943a  

4 Data Link Layer 

The main task of the data link layer is the Identification of the node interfaces 
and regulation of access to the medium. There are two main methods used in the 
data link layer, as illustrated below:  

i. Carrier Sense Multiple Access (CSMA)  
ii. Time Division Multiple Access (TDMA) acquired from telephone 

networks  

5 Physical Layer 

In the context of this book, an elaborate and fundamental description of the 
physical layer of the ISO/PSI model is compulsory. It is responsible for the 
transmission in the medium. While addressing the practical situation regarding 
IoT in agriculture, the user should be aware of the working and features of 
different modes of data transmission in this layer. Usually, an IoT application 
uses certain portions of the electromagnetic spectrum referred to as “frequency 
bands.” For transmission, a particular frequency band is used so that it is not 
altered/interfered with by any other transmission, because two different fre-
quency bands can work simultaneously. Two transmissions at a simultaneous 
frequency band during one time is not possible. 

So as to have maintained balance and to avoid any technical conflict, the 
government regulated the allocation of the EM spectrum. The frequency bands 
that the government issues to any specific organization are called licensed bands. 
These are usually cellular network providers. 

The remaining bands can be used at one's own discretion but only if these 
satisfy the following conditions:  

i. P Threshold<
(transmitted radiated power)  

ii. Threshold<n PDU
TIME
( )

(number of PDU transmitted per unit time) 

These frequency bands are known as “unlicensed bands” which can occupy 
any slot in the EM spectrum, and these are commonly used in LANs and PANs. 
The frequency determines the nature and behavior of the signal. In some 
transmissions, like that of WiFi where the frequency is 2.4GHz or 5GHz, the 
sender and the receiver should be in the line of sight (LoS). The higher the 
frequency, the higher the data is carrying capacity of the signal. 

In order to implement an effective IoT system to achieve a required goal in 
agriculture, choosing a network standard involves governing factors like: 
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I. Bitrate: low-frequency network standard when low bitrate is needed  
II. Range: dictates the type of network standard to be used  

III. Environment: presence of obstacles can hinder transmission and, hence, 
the network standard is chosen accordingly [15]. 

4.3.3 STANDARDIZATION BODIES 

In order to avoid chaos and confusion, it is must to set certain standards and thus, 
standardization bodies are necessary. These are organizations that coordinate the 
development of new standards. These can be area-specific, like the Institute of 
Electrical and Electronics Engineers (IEEE) which is concerned with electrical 
and electronics engineering and computer science. 

Some of the standardization bodies are mentioned below:  

• 3GPP: The Third Generation Partnership Project [37].  
• ITU: International Telecommunication Union [38], [39].  
• IEEE: Institute of Electrical and Electronics Engineers [40].  
• ISO: The International Organization for Standardization [41], [42].  
• ETSI: The European Telecommunications Standards Institute [43].  
• IETF: The Internet Engineering Task Force [44]. 

4.3.4 SOME IOT NETWORK TECHNOLOGIES AND STANDARDS  

1. Modbus: Modbus is a communication protocol developed by Modicon 
systems. In simple terms, it is a method used for transmitting information 
over serial lines between electronic devices. The device requesting the 
information is called the Modbus Master and the devices supplying in-
formation are Modbus Slaves. 

Various Modbus protocols are given below [45]:  

a. Modbus RTU  
b. Modbus ASCII  
c. Modbus Plus (Modbus + , MB + , or MBP)  
d. Modbus TCP/IP or Modbus  
e. Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP  
f. Modbus over UDP  

2 Near-Field Communication (NFC): 
Near-field communication (NFC) is a type of radio-frequency identifica-
tion (RFID) technology. NFC enables devices to communicate when 
brought in proximity of four centimeters. This is also known as NFC/ 
CTLS (contactless) or CTLS NFC [46], [47].  

3 Bluetooth 
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Bluetooth is a wireless technology standard that is used for exchanging data over 
short distances [48–50]. 

Bluetooth Versions: All of these are compatible with previous versions. Some 
of the important versions of Bluetooth are:  

• Bluetooth 1.x  
• Bluetooth 2.x  
• Bluetooth 3.0  
• Bluetooth 4.0  
• Bluetooth 5.x  

4 IEEE 802.15.4 
The IEEE 802.15.4 standard is comprised of physical and data link layers 
for the low-rate wireless personal area networks (LR-WPANs) [51]  

5 ZigBee 
ZigBee is a network standard for wireless connection that is used under 
low power and low data rates which are favorable in personal area net-
works (close range) and are based on IEEE 802.15.4 [52–55].  

6 ZigBee IP 
Zigbee IP is a type of wireless mesh network that works under IPv6 
protocol and provides smooth connectivity for low power economical 
devices. This was the first open standard to work in IPv6 for a wireless 
mesh network [56].  

7 WirelessHART 
The HART (Highway Addressable Remote Transducer) Communication 
Protocol is a hybrid “analog and digital” industrial automation open 
protocol. WirelessHart is a type of HART with wireless connectivity [57].  

8 ISA100.11a 
ISA100.11a is an alternative to WirelessHART when considering the 
process control feature. This was created by the International Society of 
Automation (ISA) [57].  

9 WiFi (IEEE 802.11 family) 
WiFi belongs to the IEEE 802 family which provides the LAN protocols 
in the physical layer and the data link layer of the simplified ISO/OSI 
model for WLAN (Wireless Local Area Network). It works mainly with 
2.4GHz and 5GHz bands but can also work in some other frequency 
bands [58], [59].  

10 LoRaWAN 
LoRaWAN is often used in IoT agriculture systems due to its wide area 
of coverage in creating low-power wide area networks (LP-WANs). 
LoRa is the name given to its physical layer [60–64].  

11 6LoWPAN 
6LoWPAN is LoWPAN which has IPv6 protocols. It is, therefore, a low- 
power wireless personal area network working on IPv6 [65–67].  

12 Z-Wave 
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Z-Wave works by the propagation of low energy radio waves in a mesh 
network for device-to-device communication along with wireless control 
thereof [68].  

13 Optical Wireless Communications (OWCs) [69] 
Signal transmission takes place with the help of unguided light (visible, 
UV, infrared regions). Visible Light Communication (VLC) is a type of 
optical wireless communications in which the visible region of the 
spectrum is used to carry signal [70], [71].  

14 Thread 
Thread is a networking protocol for low-power, embedded consumer, and 
commercial IoT devices that use IPv6. Initially, it aimed to prevent single 
point failure in mesh network [72].  

15 Cellular Network Standards 

There are numerous devices that operate on wireless mechanisms while using 
radio waves for signal propagation; an example of which is mobile phones. 
These devices can receive signal from many cell site base stations.  

• Second Generation (2G cellular technology) [73] 
• Third Generation (3G wireless mobile telecommunications tech-

nology) [74]  
• Fourth Generation (4G broadband cellular network technology) [75]  
• NB-IoT [60], [76] (Narrowband IoT Cellular Technology): It is a low- 

power, wide-area network radio technology standard that was developed 
by 3GPP.  

• LTE Cat M1: LTE Category M1, LTE Cat M1, or simply LTE-M is a 4G 
profile specifically designed for IoT and M2M communications.  

• Fifth Generation (5G): 5G is the latest generation of cellular mobile 
communications [77]. 

4.4 CHARACTERISTICS OF INTERNET OF THINGS 

The following characteristics are according to the International Telecommunication 
Union (ITU) Telecommunication Standardization [78] and ISO/IEC 29182-1:  

1. Interconnectivity 
The most important characteristic of IoT is that it should have the ability 
to connect anything to global information and a communication 
infrastructure.  

2. Things-related services 
IoT should have the ability to provide privacy and semantic consistency 
in thing-related services.  

3. Heterogeneity 
These characteristics of an IoT enable diverse types of devices despite 
having different protocols and hardware and network platforms to 
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intercommunicate. These devices can also connect to a service platform 
that belongs to an outside network.  

4. Dynamic changes 
This characteristic refers to the flexibility of the device in altering its 
functions according to the environment. These changes can be with re-
spect to the space and time of work [79]; it can also be the number of 
active devices.  

5. Enormous scale 
There can be a large number of devices connected in an IoT generating 
massive data that needs to be managed and further processed for 
applications.  

6. Data gathering and processing by things 
IoT devices pre-process collected data. Furthermore, services are pro-
vided either directly from the device itself or through a service provider. 
It evident that sensor network technology is one of the key enablers for 
IoT services  

7. Collaborative data processing 
An important quality of an IoT system is the ability to solve a complex 
problem with the collaboration of many “things” in the system. The 
collected data can be pre-processed at the same device or by some other 
device in the system. Particular information can be gained from pre- 
processing, and this may be shared among various devices. Next, data 
fusion is required to gain valuable insights.  

8. Maintenance-free operation 
It might be necessary for the IoT system to function without human 
intervention for an extended period of time. Accordingly, the IoT device 
must be either maintenance-free or has the ability to be remotely 
maintained.  

9. Self-adaptation 
The devices in the IoT system should be smart or intelligent in order to 
adjust for changes in operating conditions as well as capable of 
optimizing resource management and functionality.  

10. Energy efficiency and operating lifetime 
For a device to run longer, the energy consumption of the device should 
be efficiently managed. Hence, energy harvesting tools and technologies 
increase the operating lifetime of the devices.  

11. Application domains 
Some of the IoT application domains are given in the table below. It 
should also be noted that the domains can work in coordination with a 
combined IoT system.  

12. Ubiquitous 
Availability of and access to information at any time and any place 
through the connected IoT devices of the network is possible. This 
characteristic encourages the addition of various devices [79].  

13. Interoperability 
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The ability to support many different types of standards and protocols so 
as to make an IoT system fully functional is one of its main 
characteristics.  

14. Sensing and actuation 

It is the principal characteristic of an IoT to detect various parameters in the 
external environment surrounding the device in addition to device monitoring. 
Also, the actuation of the devices is of immense concern which helps in working 
and adaptability [79]. 

4.4.1 VARIOUS IOT PLATFORMS FOR SMART AGRICULTURE 

FarmBeats 
FarmBeats is an end-to-end IoT platform for agriculture that enables seamless 

data collection from various sensors, cameras, and drones [80]. FarmBeats is a 
low-cost and readily available IoT platform for agriculture. It supports high 
bandwidth sensors using TVWS – which is a low-cost, long-range technology. 

TABLE 4.4 
Rec. ITU-T F.748.0 (10/2014). Some Examples of IoT Application 
Domains [78]     

Domains Description Examples  

Industry Activities involving financial or 

commercial transactions among 

companies, organizations, and other 

entities; These include business to 

business (B2B) and business to 

customers (B2Cs) 

Manufacturing, logistics, service sector, 

banking, financial governmental 

authorities, intermediaries, etc. 

Environment Activities regarding the protection, 

monitoring, and development of all- 

natural resources 

Agriculture and breeding, recycling, 

environmental management services, 

energy management, etc. 

Society Activities/initiatives regarding the 

development and inclusion of 

societies, cities, and people 

Governmental services towards citizens 

and other social structures (e- 

participation), e-inclusion (e.g., elderly, 

disabled people), public 

transportation, etc. 

Home Activities concerning individual and 

family members 

Health monitoring for oneself (weight, 

sleeping hours, etc.), nutrition care by 

monitoring of diet taken by family 

members using a cloud database    
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FarmBeats uses a weather-aware solar-powered IoT base station and an in-
telligent gateway that ensures that services are available in both the cloud and 
while offline. It also incorporates new path-planning algorithms that extend 
drone battery life. FarmBeats is an IoT platform that meets the objectives in a 
highly variable and resource-constrained environment. 

SmartFarmNet 
SmartFarmNet is an IoT platform for smart farming applications that permits 

effortless integration and the use of virtually any IoT device, including com-
mercially available sensors, cameras, weather stations, etc. (also known as a 
“bring-your-own IoT sensor principle”) 81. This reduces sensor installation and 
maintenance costs, while providing an easy upgrade to newer and more advanced 
sensors. It supports scalable data analytics that can continuously process large 
crop performance data. This platform also offers do-it-yourself tools that allow 
plant biologists and farmers/growers to analyze and visualize plant perfor-
mance data. 

SmartFarmNet was developed by a multidisciplinary Australian team that 
included crop biologists, computer scientists, growers, and farmers. 
SmartFarmNet is the largest system in the world (in terms of the number of 
sensors attached, crops assessed, and users it supports) that provides crop per-
formance analysis and recommendations. Moreover, SmartFarmNet provides 
tools for fast and scalable data that can cope with the enormous velocity of data 
(i.e. big data) that is generated from hundreds of thousands of IoT sensors. 

Infiswift 
The Infiswift IoT platform combines an innovative edge-to-cloud connectivity 

and analytics software engine with robust Intel architecture. 
thethings.iO 
thethings.iO is the IoT application enablement platform that enables fast and 

scalable connection of things to the internet with multiple protocols, beautiful 
dashboards, and strong APIs [82]. 

Raspberry Pi 
Raspberry Pi has been emerging as the IoT platform of choice recently. 

Raspberry Pi is a rather affordable computer that runs on Linux, but it also 
provides a set of GPIO (general purpose input/output) pins that allow the user to 
control electronic components for physical computing and to explore the IoT 
with a range of connectivity options up to 8GB of memory storage [83,84]. 
Comparatively, it is more powerful and faster than other IoT boards and can 
handle complex functionality, including data-heavy audio and video streaming. 

It operates in an open-source ecosystem, as it is closed-source hardware (the 
board itself is not open hardware) [84] that is cost-effective, versatile hardware 
that has gained huge community support as tons of already ported IoT projects 
adds to its appeal. It can run a host of operating systems, such as Raspbian 
(Raspbian is open-source and runs a suite of open-source software or Debian 
Linux), Android, Windows 10, IoT Core, etc. Raspberry Pi has various models 
classified under each of the following families [85]: Raspberry Pi, Raspberry Pi 
2, Raspberry Pi Zero, Raspberry Pi 3, Raspberry Pi 4. 
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Amazon Web Services 
With Amazon Web Services (AWS) IoT, Amazon offers a managed, cloud- 

based solution. Platforms and software are all offered as a service, with the 
ability to scale and use its analytics tool on IoT data [86]. AWS has broad and 
deep IoT services, ranging from the edge to the cloud. AWS IoT cloud vendor 
brings together data management and rich analytics in easy-to-use services that 
are designed for IoT data with significant noise. It bears multilayered security 
features like encryption and access control to device data, as well as a service to 
continuously monitor and audit configurations. 

Arduino 
Arduino has been linked with agriculture for a legitimately long time. 

Arduino is an open-source hardware platform composed of a series of electronic 
boards that are equipped with a microcontroller [87]. Arduino is a simple-to-use 
IoT platform that has an appropriate blend of IoT hardware and software. It 
operates through an array of hardware specifications that can be inured to in-
teractive electronics. The software of Arduino appears in the plan of the Arduino 
programming language and the Integrated Development Environment (IDE) for 
programming the microcontroller. The recently released Pro IDE is compara-
tively more convenient and enables faster coding [88]. All of the software 
supplied is free, and the circuit diagrams are distributed as free hardware [1]. 

Kaa 
The Kaa IoT platform is an enterprise-grade IoT enablement technology that 

permits walking safely into the agriculture IoT field [90]. By tying together 
different sensors, connected devices, and farming facilities, Kaa streamlines the 
development of smart farming systems and provides maximum flexibility for a 
custom-tailored architecture design. Kaa is perfectly applicable for single- 
purpose smart farming products such as smart metering devices, livestock 
trackers, or failure prediction systems as well as for multi-device solutions – 
among which are resource mapping and farming produce analytics solutions. 
Kaa is built on a modular microservice architecture that allows for any necessary 
modifications, extensions, or integrations. 

4.4.2 THE HARDWARE 

After a considerable development in the field IoT, there are currently numerous 
hardware components of IoT that help in prototyping and are capable of different 
levels of functioning like development boards, for example [91]:  

a. Arduino  
b. Beagle Board  
c. Pinoccio  
d. Raspberry Pi  
e. Cubie Board 

The structural components of these development boards are the following: 
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i. Microcontrollers (MCUs): These are the processing units of the device 
and act as a storage area. MCUs are integrated circuits (IC) that contain a 
processor, Read-Only Memory (ROM), and Random-Access Memory 
(RAM). Examples include ARM, Intel, Broadcom, among others.  

ii. General-Purpose Input/Output (GPIO) Pins: There are a number of 
GPIO pins that serve both digital and analog. 

The modular combination of various development boards benefits communica-
tion, the formation of new sensors, new actuators, and more for advancing an IoT 
device. There are plentiful types of sensors that are used in IoT. Examples in-
clude pH sensors, airflow sensors, potentiometers, proximity sensors, soil 
moisture sensors, infrared sensors, vibration sensors, biosensors, etc. Sensors are 
usually wired into the microcontroller where the IoT device operations take 
place. 

4.4.3 OPERATING SYSTEMS 

In an IoT system, it is possible that a “thing” may not require any operating 
system, while some may require a real-time operating system (RTOS) depending 
on the efficiency, security, and purpose to be served. RTOS implements process 
and memory management and supports various services [91]. 

When an IoT system must be installed, there is a thorough investigation of all 
of the components, and selection is done only after it is ensured that these 
outmatch the necessary criteria. However, the detailed information about the 
operating systems in IoT is beyond the scope of this book. 

Basic knowledge of the operating systems that are used in agricultural IoT is 
necessary as this facilitates the user to choose an appropriate system that will 
best serve the purpose. In some cases, security is of paramount importance, so 
the operating system used should have a high level of security architecture, and 
the corresponding devices should support this level of security. Examples of 
these RTOS are Contiki, Android Things, RIoT, Apache Mynewt, Huawei 
LightOS, Zephyr, Snappy, TinyOS, Fuchsia, Windows IoT, TizenRT, Raspbian, 
Amazon FreeRTOS, Embedded Linux, Mbed OS, and beyond. 

Security and privacy are of prime importance as it is highly unsuitable for an 
operating system to procure security flaws or to allow any breach in privacy. 

4.5 INTER-OPERABILITY CHALLENGES 

The term “interoperability” in IoT can be considered as a requirement of an IoT 
system [79]. As the recent decade has witnessed an exponential development in 
this field, nowadays, we refer to “interoperability” as the characteristic of an IoT 
that serves the actual motive of the IoT to connect every other “thing.” By the 
virtue of interoperability, it is now possible for a large number of diverse devices 
to be connected and intercommunicate, thus becoming a functional part of IoT. 
To date, there has been significant, ongoing research in this field to make 
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interoperability of various types of IoT components possible. A number of 
standards and protocols are being worked on and have been worked to make 
devices interoperate. To understand in greater depth, interoperability has been 
broadly classified into three types as shown in Figure 4.15 below:  

1. Technical interoperability 
This is understood as the congruity between the hardware of the IoT 
system with all of its “software components.” In other words, the software 
should be flexible enough to support a diverse range of hardware devices 
and to be compatible with these [92].  

2. Syntactical interoperability 
In an IoT network, for devices to communicate, it is necessary that D2D 
(device-to-device) messages should have a defined syntax. The type of 
message format can range from bit tables to high-level languages like 
HTML, XML, Java Script Object Notation (JSON), comma-separated 
variables (CSV), and electronic data interchange (EDI) [92–94].  

3. Organizational interoperability 

The global- IoT infrastructure and the vastly distributed system have been 
possible only due to the capability of IoT systems to communicate valuable and 
meaningful data despite certain highly fluctuating systems. Open connectivity 
has been enhanced to handle all types of interoperability challenges [95–97]. 

4.6 APPLICATIONS OF IoT IN SMART AGRICULTURE 

As previously mentioned in Chapter One of this book, there is an increasing 
demand for food and the need to feed the enormous population of the world, and 
IoT has proven to be the best solution to date. IoT is the solution to a large 
number of problems that are otherwise not solved. The obstacles in agricultural 
production due to environmental changes can be mitigated by the adaptability of 
IoT systems. Some of the recent and common applications of IoT in agricultural 
specific domains are the following: 

Interoperability 
Challenges

Technical 
Interoperability 

Syntactical 
Interoperability 

Organisational 
Interoperability 

FIGURE 4.15 Types of Interoperability  
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1. Solar-Powered Automated Drip Irrigation System 
Agriculture irrigation accounts for 70% of water use worldwide [98,99]. 
Conventional methods of irrigation are inadequate in checking field 
losses. Irrigation, both excessive and deficient quantities, can cast a ne-
gative impact on agriculture. 
IoT provides the solution of reducing water wastage and, at the same time, 
helps in reinforcing VRT for fertilizer application. In this system, a net-
work of sensors deployed in the field called the IoT-DEVICES are used 
for detecting various parameters of the field, and these sensors use solar 
energy as their power source, thus, making them energy efficient at the 
same time. This system works by determining the soil moisture content, 
feeding the data to the processing units of the IoT system (processing units 
can vary for different IoT systems), and so providing irrigation precisely 
in the field.  

2. Agricultural Drones 
Drones are some of the sophisticated inventions that have various appli-
cations in different domains [100]. Drones, when merged in an IoT 
system, are highly beneficial in agriculture both in traditional as well as 
innovative practices. Drones can be used in precision spraying, field 
surveillance, monitoring crop growth, soil and ground investigation, 
chlorophyll content determination, nitrogen content determination, and 
high-definition pictures for various purposes analysis, among others. Crop 
yield monitoring from the data obtained from drones can be further pro-
cessed and analyzed to deliver beneficial insights. GIS technology in-
creases the efficiency of these drones in performing precise agricultural 
practices.  

3. Precision Farming 
The most important application of IoT has been precision farming, as the 
principles of precision farming were brought to reality. Precision farming 
has been discussed in detail in Chapter 1 of this book. In this section, 
however, some of the domains for IoT implementations have been high-
lighted. This has gained the attention of reputable industries and organi-
zations all over the world. A notable amount of research is being done in 
this field [100]. 
IoT is now easy to install and easy to operate. The information available 
through the IoT cloud services have been so compelling that this is uti-
lized in artificial intelligence. The IoT has enabled real-time monitoring 
for the farmers, and now, he/she can receive information and remotely 
access these devices. These economically feasible IoT systems are 
available in the market and have further increased the success of this 
emerging trend of precision farming [101].  

4. Smart Cultivation 
Smart cultivation is boosted by the IoT system implemented in a certain 
field because, in a broader sense, the DSS (decision support system) is 
reinforced by IoT [100]. In cultivation, IoT minimizes wastage by 
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calculating the adequate amount of input requirement. The harvest field 
can be monitored, and smart systems in IoT benefits the farmer by re-
ducing human efforts.  

5. Green House Production 
With IoT in action, greenhouse shortcomings have been greatly mitigated 
[101]. The WSN that can be installed in the greenhouse can detect the 
environmental conditions and transmit this data to a storage location; after 
which, analysis is done on this data using countless sophisticated tools and 
analytical models. Monitoring becomes easy; remote access to various 
elements like the irrigation system, light intensity system, temperature 
control system, etc. is now possible. Now, a farmer can manage a number 
of processes through a smartphone [100].  

6. Monitoring Activities 

In order to gain an expert suggestion from agronomists, it is necessary for there 
to be continuous monitoring of various parameters of both the field and the crops 
[101]. Manually, it is not possible to oversee things in such a manner. 
Accordingly, IoT provides an edge in supervising all of the aspects of agriculture 
and provides this data to the expert so that reliable advice can be framed for a 
farmer. 

The main parameters of agriculture that need to be monitored are the 
following:  

a. Irrigation and Water Quality Management 
A smart irrigation system is essential for smart farming. For this purpose, 
soil moisture content and temperature data is constantly determined by 
sensors and is passed to a processing unit, or it can be processed at the 
sensor itself sometimes. Real-time water quality monitoring is also done 
with the help of the same IoT system. Hence, irrigation and water quality 
management become more convenient.  

b. Monitoring Weather 
Weather plays an important role in the yield gained from the crops. 
Therefore, in order to avoid any damage due to weather, it is necessary 
that we continuously monitor air, temperature, humidity, pressure, light 
intensity, rain, speed, and the direction of the wind so that prediction is 
done based on this data. Consequently, a farmer can determine the right 
time and never encounter unfavorable environmental conditions. Wireless 
sensor networks (WSN) is a preferable choice for weather mon-
itoring [102].  

c. Monitoring the Soil 
Moisture is paramount for crop growth, as there is a water requirement for 
crops as nutrients are also supplied to crop through it. Moisture in the soil 
is efficiently determined by some types of sensors, and it once required 
serious human efforts. In addition to reducing water wastage, an auto-
mated irrigation system can also be used to identify the macronutrients 
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(i.e. nitrogen, phosphorus, and potassium). For farmers manually per-
forming this test, it is a tiresome process. IoT enables farmers to receive 
information about the soil conditions and remotely monitor the field with 
information about soil requirements and corresponding useful suggestions 
for the amount of input.  

d. Monitoring the Farm 

The agricultural industry provides a large number of options that are related to 
farm management. Some of these include cattle farms, poultry farms, beehives, 
etc. IoT has revolutionized these fields altogether, and the impact on agriculture 
may be direct or indirect. 

With the introduction of IoT in agriculture, there has been a lot of im-
provement in this sector. People have come up with brilliant and innovative 
ideas. An example of such an idea was to prevent the attack of animals in fields. 
Known conventional methods were not substantial enough, so IoT and cloud- 
based technology were used, and this notably reduced the loss of lives in this 
specific case [e-Device for the Protection of Agricultural Land from Elephant 
Attacks in Odisha: A Review] [79].  

7. Crop Management 
Crop management is an important task when it comes to increasing the 
production and quality of the crops [101]. For this purpose, historical data 
plays a key role in crop management. Precision agriculture requires 
knowledge that is acquired from a deeper analysis of the data so that every 
action bears maximum efficiency. Some of these examples include water 
quantity required, time of watering, amount and time of fertilizer and 
pesticides application, etc. Under a sophisticated IoT-based management 
technique, real-time information reaches the farmer via an email or SMS, 
whichever is more convenient, and this has taken crop management to the 
next level.  

8. Agricultural Machinery 
The implementation of IoT in agriculture has changed the entire scenario 
[101]. As previously mentioned, the drone in the section before is an 
example of agriculture machinery. 
Some of the machines have direct applications, while others serve indirectly. 
Some are used for surveillance, replacing humans in performing agricultural 
practices and in monitoring various parameters. IoT enables machinery to 
become more competent than conventional alternatives. Taking for example a 
seeding device that is guided by GIS, GPS-like technologies that are con-
nected in IoT networks provides higher precision in seeding.  

9. Disease and Pest Control 

There are diverse benefits for IoT implementation, and disease and pest control is 
one of the major achievements of IoT in agriculture [101]. There is approxi-
mately a 37% loss in crop production each year. The data from the IoT system is 
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stored in a cloud and subsequently, analysis of this data done. The data is either 
directly shared with an expert or is rendered to a machine learning platform 
where the results are obtained. The predictions are done based on computational 
analysis. Both machine learning and deep learning are incorporated and using 
various algorithms, diseases, and pest attacks can be forecasted. Convolutional 
neural networks are also used to train the system. IoT has a feature that informs 
the farmer over a cellular network of his/her phone in order to take necessary 
action. An example includes the image processing done from pictures collected 
from the field to evaluate the condition of the field and the crops.  

4.7 CHALLENGES FOR THE IMPLEMENTATION  
OF IoT IN SMART FARMING 

In agriculture, implementing an IoT system faces a remarkable number of 
challenges, and these challenges can arise and vary according to specific situa-
tions. Generally, these issues can be classified under the following sec-
tions [101]:  

I. Selecting the Right IoT Devices (Physical Devices and Software) 

The foremost challenge in the implementation of IoT in agriculture is choosing 
the right devices that are to be integrated with the IoT system, which includes 
both physical and software components. 

The following are some of the definitive challenges in choosing devices for 
agricultural IoT:  

a. Specific devices in agriculture are generally prone to harsh environmental 
conditions like low/high temperatures, rain, wind, humidity, and high 
chances of destruction.  

b. Since IoT is mostly implemented in areas where the power source is a big 
challenge to keep the system working, battery-operated devices or those 
with a longer are working times are preferred. 

c. Proper infrastructure for processing the huge data generated by the de-
vices is one of the most formidable obstacles, and the software tools to be 
used should be compatible with the devices in order to perform the sui-
table function necessary in a particular IoT.  

d. Another challenge is to maintain uninterrupted connectivity with the 
devices against the external threats posed to these devices. 

e. The reliability of the IoT system depends on the safety of inter-
connectivity among the devices; hence, the physical safety of devices is 
also an issue.  

f. Scalability is a common challenge that is faced by the IoT system, as 
there is a limitation in each gateway as well as the protocol of supporting a 
particular number of nodes, as each node requires a specific identification 
in a network. 
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g. The spatial arrangement of the devices is also a hindrance to IoT system 
efficiency.  

h. In terms of heterogeneity, the diverse types of IoT devices have different 
interfaces and communication protocols, so there is difficulty in finding a 
feasible way to make this system work.  

II. Interoperability Challenges 
As explained in Section 3.5., there are different types of IoT devices and 
components in an IoT system that need to work in coordination with one 
another so as to benefit the user with the desired results. It is necessary 
for them to be interoperable in many aspects that have been defined 
earlier in this chapter.  

III. Choosing a More Efficient Middleware 
Interoperability is possible due to the middleware in an IoT network. 
Thus, it can be considered as software that enables interoperability by 
making diverse applications and services to work with one another. It 
acts as a bridge between the network layer and the application layer of 
the reference model.  

IV. Appropriate Communication Technology 

The efficiency of an IoT system depends on the communication technology 
opted for IoT applications. In this scenario, Wireless communications play a 
major role and are commonly used in IoT; however, but these have unique 
limitations as well. There are two types of wireless communications based on the 
type of frequency bands:  

a. Unlicensed Frequency Bands: These mainly use the 2.4GHz ISM 
(Industrial, Scientific, and Medical) band for communication. These bands 
are less secure, include more interference, and are costly to establish.  

b. Licensed Frequency Bands: These are used by cellular communications 
(GSM Network). These bands are reliable, secure, have good network 
management, and has a good quality of service. The only issue lies in cost 
and power consumption.  

V. Interference 

When the IoT devices in a wireless network operate in a particular frequency 
band, there is interference caused due to devices in the same frequency band or 
the operation of the devices in its adjacent frequency band. 

4.8 SECURITY AND PRIVACY ISSUES OF AN IoT 

To understand the security issues of the IoT implementation, Dr. Barry Boehm 
has explained the following relevant terms in a simpler manner: 

Safety: The system must not harm the world. 
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Security: The world must not harm the system. 
Accordingly, for an IoT system to be adequate and reliable, it should be 

ensured that both aspects are achieved in a proper way. The most important 
factor that needs to be understood is that IoT security is significantly different 
from and way more complex than that of conventional networks, hosts, and types 
of cybersecurity. This is due to the fact that it is not possible to apply the same 
set of guidelines or certain fixed meta-security rules because the challenge is that 
each IoT-device is different. Furthermore, the diversity of these connected de-
vices develop the need for specific security recommendation for each device; 
hence, a unique application for each system and system-of-system in an IoT 
network is necessary [91]. 

The security of the “IoT-device” is deduced from its definition which is, “any 
device that has the capability to communicate either directly or indirectly 
over the internet and has the ability to manipulate or monitor something 
physical (in the device, the device's medium, or the environment), that is, 
the thing itself, or a direct connection to a thing” [91]. Based on this 
definition, IoT-device security is the function of the following:  

1. The use of the device  
2. The physical process or state which can be affected or controlled by the 

device  
3. The sensitivity of the systems it is connected to 

Security 
Security is defined as safety from significant security threats towards con-

fidentiality, authenticity, and integrity of both data and services [78]. 
Privacy 
Privacy is the safety against the data collection by a ubiquitous sensor net-

work (USN) without human users being aware of such collection. There should 
be proper safety to guard the information corresponding to their legal 
owners [78]. 

Security remains the most important challenge in the implementation of IoT 
in smart farming [103], and addressing these challenges is compulsory. Usually, 
an unsecured IoT is prone to data loss, unauthorized access to nodes, there 
sensed data, and numerous other threats. Another hurdle in securing the IoT is its 
insufficient memory and processing for a sophisticated encrypted algorithm. 

Examples of security issues include the following [101]:  

i. Device-captured attacks due to the IoT devices revealing their location  
ii. Denial service attack (DoS), jamming attack, and hijack attack that occur 

during IoT communication  
iii. Unauthorized services, data tampering, session hijacking in a cloud of 

IoT system 
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Some possible mitigative measures include [101]:  

i. Encryption/decryption algorithms  
ii. Key distribution mechanisms  

iii. Intrusion detection systems  
iv. Secure routing policies 

4.8.1 THREAT TYPES 

Various threats other than data alteration are listed below, these threats are also 
to be addressed, and proper severity measures should be present to relieve 
them [15].  

• Identity spoofing  
• Tampering with data  
• Information disclosure  
• Denial or degradation of service  
• Bypassing physical security 

In order to ensure proper security of the IoT system, the countermeasure taken 
should be applied at different layers according to the type and degree of the 
threat that they are vulnerable to. IoT-devices, network services, cloud services, 
and user elements should all be thoroughly investigated for threats and must have 
proper provisions for cybersecurity controls. 

4.9 FUSION OF CLOUD PLATFORM WITH IoT 

When set up in any agricultural sector, IoT is constrained by its limited power in 
processing and storage. In order to overcome these basic shortcomings of IoT, a 
cloud platform is fused with it. Cloud has been a promising solution to problems 
related to handling considerable data generated from IoT “things.” This has 
paved the way to new horizons that are related to data analysis and management. 
Considering the overall benefit from the fusion of cloud and IoT, it can be de-
duced that the efficiency and performance of the IoT system have increased by 
many folds. A WSN used in an IoT system helps to transfer the data from a node 
and then uploading it to a cloud where it is stored, processed, and analyzed.  

Other than the abovementioned case, there are a number of reasons why the 
cloud is important in an IoT system. The table given below is not the exact 
representation of an IoT or cloud, but in a general sense, it may help to grasp the 
idea of the complementary aspects of cloud and IoT. 

4.9.1 INTEGRATION OF BIG DATA INTO SMART AGRICULTURE 

The data that is being generated from the latest technologies like sensors, IoT 
systems, AI machines, drones, GIS, etc. in Agricultural 5.0 lead to the formation 
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of agricultural big data. Even small-scale farmers contribute to big data through 
agricultural tools and the allied activities that generate data. 

Big data holds endless applications in smart agriculture and, big data is the 
source of knowledge for agricultural practices to be performed with high ac-
curacy. Agricultural data that is generated from multiple sources like satellites, 
remote sensing systems, IoT systems, drones, GPS technology, infrared camera, 
various sensors, etc. which can be in any form, including videos, images, sounds, 
graphical patterns, etc. can be considered as big data if it satisfies the char-
acteristics of big data (6 Vs) [105–107]. 

IoT services generate a tremendous amount of big data that needs to be 
properly processed and analyzed to obtain vital information that can aid in 
various practices like the selection of inputs, increasing soil and water efficiency, 
predicting fertilizer consumption of any crop, etc. 

Smart farming is gained from the results derived from the system using 
machine learning, advanced statistics, and advanced data mining tools which are 
excellent analytic techniques for big data. A serious number of industrial orga-
nizations have started investing in smart agriculture using big data as a sub-
stantial source for designing smart machinery. Some critical predictions that 
have an impact on agriculture are achieved through big data with high precision 
like weather prediction, yield prediction, predicting demand in the market for a 
crop, etc. Big data is capable of reinforcing, adding, or even replacing the 
knowledge that is used for various agricultural practices. The decision support 
systems that assist in agriculture use big data for effective decision-making. 
Moreover, another benefit of big data is that it has transformed agricultural 
businesses and enterprises which ultimately have massive contributions to smart 
farming. Nowadays, there are many tools for big data analytics that are available 
worldwide and free to use or called “open source” (e.g. Hadoop). 

Hence, it can be concluded that big data used in disruptive technologies like 
AI, ML, DL, Blockchain, IoT, among others. has been one of the major driving 
forces for the transformation of precision agriculture to “smart precision agri-
culture” [108]. 

TABLE 4.5 
Complementary Aspects of the Fusion of Cloud with IoT [104]     

Characteristics/Features/Roles IoT Fusion of Cloud  

Displacement Pervasive Centralized 

Reachability Limited Ubiquitous 

Computational capabilities Limited Virtually unlimited 

Storage Limited or none Virtually unlimited 

Role of the Internet Point of convergence Means for delivering service 

Big Data Source Means to manage    
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4.9.2 CLOUD PLATFORM FOR AGRICULTURAL BIG DATA STORAGE 

The magnitude of benefits that agriculture derives from the cloud platform can be 
understood by using the acknowledged definition of cloud computing itself. 

According to the National Institute of Standard and Technologies (NIST), 
“Cloud Computing is a model for enabling ubiquitous, convenient, on-demand 
network access to a shared pool of configurable computing recourses that can be 
rapidly provisioned and released with minimum management effort or service 
provider interaction.” 

Fourth Industrial Revolution (4IR) technologies generate sizeable data and 
work on that data. Thus, in simpler terms, we can say that these technologies are 
data-driven. Particularly, in the case of IoT, we mostly have systems that gen-
erate a significant amount of data that needs to be stored somewhere. Also, 
processing and analysis must be done for this data, and this can sometimes be 
possible in an IoT network independently, but in most of the cases, we need at 
least a cloud for these purposes. These two technologies are distinct, but the IoT 
benefits are maximized by merging these with a cloud. Some of the IoT short-
comings are mitigated by the cloud, as it provides excellent IoT service man-
agement which is considerably necessary. Cloud also benefits IoT in practically 
supporting its applications and services. 

Keeping the IoT devices updated is a crucial task, and the option of FOTA 
(Firm Over the Air) is easily possible with the help of the cloud. Remote updates 
and remote diagnoses have become less tedious, and it occurs with a lot of 
benefits like the reduction in maintenance and support expenses [109]. 

The authors of [104] have presented the limitations of IoT that have been 
resolved by a cloud below:  

1. Communication: In an IoT system, data communication and application 
services are based on communication in its network. With the introduction 
of the cloud to the IoT system, results have improved in terms of data 
management, distribution, and most importantly, data communication. 
The cloud provides the support for customized applications that make 
monitoring, management, and other operations of an IoT system notably 
easier. High-speed connectivity is the factor that determines the accel-
eration of operations and the rate of data transfer from the edge to the 
cloud in an IoT-Cloud system. As the development of more efficient and 
faster network mediums is in progress, there are high chances of im-
provements that might have a significant impact on the IoT-CLOUD 
system.  

2. Storage: Also in the agriculture field, IoT devices generate a large 
number of data that needs to stored safely. The data has a large variation 
in its form, as it is generated by multiple sources that are unstructured or 
semi-structured in nature. The cloud provides huge storage where the 
storage time is considerable and economical. The cloud linked to an IoT 
creates new horizons for data sciences that, ultimately, improve the results 
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in the IoT system. Data is accessible to its legal owner quite conveniently 
even through APIs. Cloud provides rather promising security, and their 
encryptions are world-class, thus making it more reliable to store data. 
The chances of losing data are negligible, as this not stored at a single 
place and has multiple backups to avoid any catastrophe.  

3. Computation: As discussed earlier, IoT processing and the resources 
needed for it can become a hurdle for an IoT system's efficiency. Another 
stronger driving force for the IoT-CLOUD integration is that most of the 
complex processes cannot be handled by only the device itself even if the 
device is smart. There must be a node present in the IoT system that is 
capable of handling such processing. Thus, there occurs the issue of 
scalability increasing the demand for infrastructure. 

Here the role of the cloud is highlighted, providing required processing and the 
storage which an IoT may require. 

For implementing IoT and the adoption of the cloud, the necessary knowledge 
about the types of clouds is required as per their service. In the agricultural 
domain, the need for a cloud may depend upon its specific application as well as 
on many other constraints. Users must have enough expertise in choosing an 
appropriate cloud platform to serve him/her in the best possible way. 

There are different types of cloud service models that are divide by NIST into 
three customary types [110]: 

I. Infrastructure as a Service (IaaS): When an IoT is generally im-
plemented in the agricultural field, the proper infrastructure for data 
storage and complex processing is lacking. Therefore, preferably, a cloud 
is introduced in that IoT system. The user can utilize this infrastructure at 
will and has the option to expand or terminate according to project re-
quirements and at a cheaper rate which would otherwise be economically 
infeasible. 
IaaS provides services like networking, servers, data management cen-
ters, and storage which are charged as per the specific cloud resources 
opted for.  

II. Platform as a Service (PaaS): The PaaS model of cloud provides many 
services to the applications of IoT systems. It enables the testing or 
prototyping of newly created applications. In agriculture, the benefits of 
PaaS is a huge amount that can be saved while developing a new service 
or application. 
In this model, a cloud offers all of the necessary components that are 
required for the complete construction and distribution of a cloud ap-
plication, and thus, the cloud is responsible for all of the necessary 
hardware, software, and hosting. 

III. Software as a Service (SaaS): SaaS is a system in which the require-
ment is only to be improved by the application without the need to 
maintain and update infrastructure and components. It has a greater 
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flexibility solution for cloud adoption. The cost and benefit equation 
should be considered while choosing this model. In this model, cloud 
application (or other software as a service) is remotely operated by a user 
which are then run and processed in the cloud itself and are accessible 
through the network. 

4.10 CONCLUSION 

IoT is one of the innovative technologies that are a part of Industry 4.0. In order 
to deploy an IoT system in the agricultural field, one should have knowledge 
about the fundamentals, components, and workings of the IoT system, as de-
scribed in this chapter. 

IoT is a system of systems in which communication and data transfer are 
possible in each connected “thing.” IoT has reinforced smart agriculture by the 
virtue of the flexibility that it possesses to connect diverse types of things. There 
are various agriculture-specific IoT platforms available that have made the im-
plementation of IoT practically an effortless task. IoT has numerous applications 
as well as associated benefits in the agricultural arena. Agricultural IoT generates 
enormous data that is valuable to deduce conclusions. With proper security and 
privacy, this IoT technology has been an important asset of Industry 4.0 and has 
revolutionized the agricultural sector. With the fusion of IoT with cloud, the 
benefits of IoT have been leveraged due to more storage, efficient communica-
tion, and high computational power. Edge and fog computing are the recent 
upgrades in IoT systems that have a positive impact on the overall speed, quality, 
and performance of a system.  
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5 AI (Artificial 
Intelligence) Driven 
Smart Agriculture   

5.1 ARTIFICIAL INTELLIGENCE (AI) – INTRODUCTION 

The notion of man-made creation acting as intelligent beings has existed in 
Greek mythology. The origin of modern artificial intelligence (AI) dates back to 
the time of classical philosophy which describes human thinking as a manip-
ulation of symbols [1]. Alan Turing’s question “Can Machines Think?” [2] 
started a new domain in computing in 1950. The term, “artificial intelligence”, 
was first coined in 1956 by American computer scientist John McCarthy at the 
Dartmouth Conference. McCarthy, along with Alan Turing, Allen Newell 
(Carnegie Mellon University (CMU)), Herbert A. Simon (CMU), Marvin 
Minsky (Massachusetts Institute of Technology (MIT)), and Arthur Samuel 
(International Business Machines Corporation (IBM)) are known as the founding 
fathers of AI [3]. In the early 1950s, problem-solving and symbolic methods 
were the most researched areas of AI. In the 1960s, the Department of Defense in 
the US started to develop curiosity in training computers that mimick human 
behavior. All of these efforts built a path for today’s world of automation along 
with the power of reasoning of computers that supports incorporating human 
behavior in them [4]. From the year 2000, the AI revolution started and made its 
entry into homes, Facebook, Netflix, Hollywood, and other important fields to 
date (Figure 5.1). 

The term artificial intelligence is formed with two words and has received 
many definitions during the past decades. 

The dictionary defines “intelligence” as:  

• The ability to sense  
• The ability to act  
• The ability to solve  
• The ability to understand 

Furthermore, the word “artificial” is defined as: produced or modified by human 
skill and labor, unnatural. 

When combined the term AI is defined as: 

John McCarthy defined AI as “the science and engineering of making intelligent 
machines.” 
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Adequate characteristics of AI include: 

Norvig and Russell proceed to explore four different approaches that have his-
torically defined the field of AI: thinking humanly, thinking rationally, acting 
humanly, and acting rationally [7]. 

Another sufficient explanation is the following: 

Patrick Winston, the Ford professor of artificial intelligence and computer science at 
MIT, defines AI as “algorithms enabled by constraints, exposed by representations that 
support models targeted at loops that tie thinking, perception, and action together”[8]. 

Furthermore, the terminology is expounded below: 

“The science and engineering of making intelligent machines, especially intelligent 
computer programs.” It is a crossbreeding of diverse fields including philosophy, 
logic, methods of reasoning, the mind as physical system, foundations of language, 
maths, and statistics. 

Finally, another acceptable definition is: 

“An approach to make a computer, a robot, or a product to think how smart humans 
think, learn, decide, and work when it tries to solve problems.”  

As a result of the increased data volumes, advanced algorithms, and improvements 
in computing power and storage, AI, with the ability to interact with the real world 
to perceive, solving new problems, planning, and the capability of making deci-
sions in dealing with unexpected problems, continuously learning uncertainties, 
and adapting [5], has risen to popularity. AI is all about the principle of simulating 
and programming human intelligence into machines in order to perform functions 
similar to human beings [9]. The perfect feature of AI is its ability to differentiate 
and define actions on the basis of their probability in an effort to achieve complex 
goals in the best way possible. The machines attain cognitive functions such as 
perceiving, learning, and reasoning and are able to solve problems like a newborn 
baby that is just starting to learn to categorize and recognize [10]. John McCarthy 
and et al. [11] advocated the following features of AI: 

Automations 
Language-Programmable 
Calculation Size 
Self-Improvement 
Abstractions 
Randomness and Creativity  

All of the progressive work in AI started in the quest to finding answers to the 
above-listed features, and nowadays, AI is the most discussed, most popular, and 
most researched area. 
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Currently, AI is the bigger concept in creating intelligent machines that can 
simulate human thinking capability and behavior, whereas, machine learning and 
deep learning are gloried to be the subsets of AI that allows machines to learn 
from data without being explicitly programmed [10]. Figure 5.2 below shows 
other subsets of AI. With these additions, AI is defined as: 

“A computer system able to perform tasks that ordinarily require human in-
telligence… Many of these artificial intelligence systems are powered by machine 
learning; some of them are powered by deep learning, and some of them are 
powered by very boring things like rules.” [3], [5]  

Artificial intelligence has become popular in the financial industry for fraud 
detection, self-driving cars, agricultural tractor, drones and robots [12]–[14], IoT, 
supply chain, health [15], education, analytical programs, decision and expert 
systems, smart assistants like Alexa, Siri, and many more [5]. 

5.2 CATEGORIES OF AI 

With machine learning (ML), natural language processing (NLP), and deep 
learning as the revolutionary subsets of AI, the most distinctive categories of AI 
started to develop as discussed below [16]–[19], [20]: 

FIGURE 5.2 Different Subset of AI.  
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5.2.1 TYPE I (BASED ON EMBEDDED LEVEL OF INTELLIGENCE)  

1. Weak AI or Narrow AI 
Weak or Narrow AI is a type of AI which is able to perform a dedicated 
task with intelligence. It is the most common and currently widely used AI 
form. Narrow AI is only able to do a task for which it is trained, and it fails 
beyond these boundaries. Examples include Apple Siri, Chess Playing, e- 
shopping recommendations, self-driving cars, and IBM's Watson 
supercomputer.  

2. General AI 
General AI is the type of intelligence that could perform any intellectual 
task as efficiently as a human being. The core thought of General AI is to 
make machines smart like humans, with their own thinking capability. 
Current AI in the 21st-century world and research is at this stage, and more 
time and advancement are required to progress from this stage.  

3. Super AI 

Super AI is the level of systems intelligence in which machines surpass human 
intelligence and can outperform human beings in any task. This is an outcome of 
general AI. Although it is currently a hypothetical concept, if it is achieved, then 
it will change the world. 

5.2.2 TYPE II (BASED ON FUNCTIONALITIES)  

1. Reactive Machines 
Reactive machines are the oldest form of AI with extremely limited cap-
abilities. These have no storage capacity and, therefore, are unable to learn 
from the past. They can only react in a limited means. 
Purely reactive machines are the most basic types of artificial intelligence. 
IBM's Deep Blue system and Google's AlphaGo are examples of reactive 
machines.  

2. Limited Memory 
Limited memory machines have storage capacity for a short period of time. 
They can learn from past data experiences, train, and also perform the 
functions of a reactive machine. Various AI algorithms can be applied to 
large volumes of data to generate insights and enhance accuracy. The self- 
driving car uses a limited memory approach. Most of the present-day AI 
machines of the 21st century use a limited memory approach.  

3. Theory of Mind 
Theory of mind AI is the next level of AI that is still under research, and no 
success has been achieved to date. A theory of mind level AI will be able 
to better understand entities it is interacting with by discerning their needs, 
emotions, beliefs, and thought processes. AI machines will be able to 
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perceive humans as individuals whose minds can be shaped by multiple 
factors, thus essentially “understanding” humans which is called the 
“Theory of Mind” in psychology.  

4. Self-Awareness 

Creating this type of AI, which is decades, if not centuries away from materi-
alizing, is and will always be the ultimate objective of AI research. This type of 
AI will not only be able to understand and evoke emotions in those that it in-
teracts with, but also have emotions, needs, beliefs, and potentially, desires of its 
own. Machines will have their own consciousness, sentiments, and self- 
awareness. Moreover, this is the type of AI that doomsayers of technology are 
wary of. This is because, once self-aware, AI would be capable of acquiring 
ideas like self-preservation which may directly or indirectly spell the end for 
humanity. As such, an entity can lead to catastrophes as well. Hollywood movies 
like Terminator or Robocop are analogous examples of what this type of AI 
could develop into. 

5.3 SUBSETS OF AI 

Until this point, we have learned about the definitions of AI, and now, we will 
learn about the various subsets of AI in this section. The following are the most 
common subsets of AI [20]–[22]: 

5.3.1 MACHINE LEARNING 

Machine learning is a component of AI that provides intelligence to machines, so 
these can obtain the ability to automatically learn through experiences without 
being explicitly programmed. It consists of three types: Supervised, 
Unsupervised, and Reinforcement. Chapter 6 exhaustively elaborates and dis-
cusses machine learning (ML). It is the most common and popular approach of 
AI in the field of agriculture and beyond. 

5.3.2 DEEP LEARNING 

Deep learning is a subset of AI and ML which enables a machine to perform 
human-like tasks excluding human involvement. It enables AI agents to mimic 
the human brain like an artificial neural network. Deep learning can utilize both 
supervised and unsupervised learning to train an AI agent. 

5.3.3 NATURAL LANGUAGE PROCESSING 

Natural language processing (NLP) is a subset of AI. NLP enables a computer 
system to understand and process human language such as English, whether text 
or speech. NLP acts as a linguistic tool incorporator for AI. With NLP, human 
language can actually be used to make machines learn and work. Today, AI, 
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along with NLP, is all around us. We can easily ask Siri, Google, or Cortana to 
execute tasks for us in our language. 

5.3.4 EXPERT SYSTEM 

Expert systems are computer programs that depend on knowledge obtained from 
human experts which is subsequently programmed into a system. Expert systems 
emulate the decision-making ability of human experts. These systems are de-
signed to solve complex problems through bodies of knowledge rather than using 
conventional procedural code. One of the examples of an expert system is the 
suggestion for spelling errors while typing in the Google search box. 

5.3.5 ROBOTICS 

Robotics has advanced into an extremely intriguing topic of artificial in-
telligence. For the most part, this fascinating field of innovative work focuses on 
designing and developing robots. Robotics is an interdisciplinary field of science 
and engineering consolidated with mechanical engineering, electrical en-
gineering, computer science, and numerous others. It strategizes the design, 
production, operation, and use of robots. It manages computer systems for 
management, procurement of intelligent results, and data change. 

5.3.6 MACHINE VISION 

Machine vision is an application of computer vision that enables a machine to 
recognize an object. Machine vision captures and analyzes visual information 
using one or more video cameras, analog-to-digital conversations, and digital 
signal processing. Machine vision systems are programmed to perform narrowly 
defined tasks such as counting objects, reading the serial number, etc. Computer 
systems may not see in the same way as human eyes can see, but these are also 
unbound by human limitations and can even possess the ability to see through 
a wall. 

5.3.7 SPEECH RECOGNITION 

Speech recognition is a technology that enables a machine to understand spoken 
language and translate it into a machine-readable format. In this form, a voice 
command or speech becomes the input for a computer to execute a certain task. 
There are particular types of speech recognition software with a limited voca-
bulary of words and phrases. This software requires unambiguous spoken lan-
guage to understand and perform specific tasks. Today, there are various 
software or devices which contain speech recognition technology such as 
Cortana, Google virtual assistant, Apple Siri, etc. We need to train our speech 
recognition system to understand our language. In the past, these systems were 
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only designed to convert speech to text, but now, there are various devices that 
can directly convert speech into commands. 

5.4 LIFE CYCLE OF AN ARTIFICIAL INTELLIGENCE-BASED  
MODEL 

The AI life cycle is the recurrent process that data science projects follow. It 
defines each step that an organization should pursue in order to take advantage of 
machine learning and artificial intelligence (AI) in deriving practical business 
value. A similar process is followed for an ML-based project. The terminologies 
AI and ML are used interchangeably. There are major steps in the AI life cycle, 
all of which are of equal importance and must progress in a specific order. The 
major phases in AI can also be referred to as the Planning Phase, Data Phase, 
Development Phase, and Deployment Phase.  

1. Define Project Objectives: The first step of the life cycle is to identify an 
opportunity to tangibly improve operations, increase customer satisfaction, 
or otherwise create value.  

2. Acquire and Explore Data: The second step is to collect and prepare all of 
the relevant data to be used in machine learning. This entails consulting 
domain experts to determine which specific data might be relevant in pre-
dicting the required solution, gathering that data from historical records, and 
getting this into a format that is suitable for analysis – most likely into a flat- 
file format such as a .csv, .arf, or .text. In this step, we need to identify the 
different data sources, because data can be collected from various sources 
such as files, database, the internet, or mobile devices. This is one of the 
most important steps of the life cycle. The quantity and quality of the col-
lected data will determine the efficiency of the output. The bigger the 
amount of data, the more accurate the prediction will be.  

3. Data Preparation: After collecting the data, this needs to be processed for 
further steps. Data preparation is a step where we set our data into a sui-
table place and qualify it for use in our machine learning training. In this 
step, we first ready all of the data together and then randomize the ordering 
of data. This step can be further divided into two processes:  

• Data exploration: 
Data exploration is used to understand the nature of data that we have to 
work with. We need to examine the characteristics, format, and quality 
of data. Better consideration of data leads to an effective outcome. In 
this, we discover correlations, general trends, and outliers.  

• Data preprocessing: 
At this point, the next step is the preprocessing of data for the purpose 
of analysis.  

4. Data Wrangling: Data wrangling or data preprocessing is the process of 
cleaning and converting raw data into a useable format. It is the process 
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of purifying the data in order to address quality issues, selecting the 
variable to use, and transforming the data in the proper format in order to 
make it more suitable for analysis in the next step. It is one of the most 
vital steps of the entire process. In addition, gathered data is not necessarily 
always useful to the user. In real-world applications, collected data may 
have various issues, including:  

Missing Values 
Duplicate data 
Invalid data 
Noise  

Accordingly, we use various filtering techniques to clean the data. It is 
mandatory to detect and remove the above issues because these can ne-
gatively affect the quality of the outcome.  

5. Model Data: In order to gain insights from the data through machine 
learning, a target variable must be determined; this is the factor in which 
the user aims to gain a deeper understanding of. In this step, the appro-
priate selection of analytical techniques like classification, regression, 
cluster analysis, association, and building models review the result. This 
consists of two important processes for an AI model; 
Training Phase: In this step, we train our model to improve its perfor-
mance in generating better outcomes for the problem. We use datasets to 
train the model using various machine learning algorithms. Training a 
model is required so that it can understand the various patterns, rules, and, 
features. 
Testing Phase: In this step, we check for the accuracy of our model by 
providing a test dataset parallel to it. Testing the model determines the 
percentage accuracy of the model as per the requirement of the project or 
problem.  

6. Interpret and Communicate: One of the most difficult tasks of machine 
learning projects is explaining a model’s outcomes to those without any data 
science background, particularly in highly regulated industries such as 
healthcare. Traditionally, machine learning has been thought of as a “black 
box,” because it is arduous to interpret insights and communicate the value 
of those insights to stakeholders and regulatory bodies. The more inter-
pretable a model is, the easier it will be to meet regulatory requirements and 
communicate its value to management and other major stakeholders.  

7. Implement, Document, and Maintain: The final step is to implement, 
document, and maintain the data science project so that the stakeholder can 
continue to leverage and improve upon its models. Model deployment 
often poses a problem because of the amount of coding and data science 
experience it requires and because the time-to-implementation from the 
beginning of the cycle that uses traditional data science methods is pro-
hibitively long. 
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5.5 PREREQUISITES FOR BUILDING AN ML/AI-BASED  
AGRICULTURAL MODEL 

Competent expertise or knowledge of the following is required in order to pursue 
an ML/AI project: 

Basic Computer Knowledge 
Linear Algebra 
Statistics and Probability 
Calculus 
Graph Theory 
Programming Skills – Language such as Python, R, MATLAB, C + + or Octave 
Data, Hardware  

5.6 ADVANTAGES OF AI IN AGRICULTURE 

AI has a major role in Agriculture 4.0, and the advantages are numerous. 
Examples of leverage with the introduction of AI in agriculture are [24]:  

1. AI provides better insights into data obtained from the field and, thus, 
helps in the adequate utilization of resources/inputs.  

2. Agricultural data is effectively analyzed by the AI models so as to make 
precise predictions. 

3. AI reinforces the cultivation, harvesting, and marketing of crops in effi-
cient ways. 

FIGURE 5.3 Lifecycle of an AI/ML Working Model [23].  
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4. The AI model makes disease detection a feasible process, hence im-
proving the potential for healthy crop production.  

5. AI technology has been the backbone of agricultural businesses in the era 
of Agriculture 4.0 and has significantly promoted and raised new business 
opportunities.  

6. AI has considerably revolutionized the weather forecasting system in 
agriculture, and this plays a vital role in agriculture.  

7. Crop management practices have reached new heights, and it has become 
quite convenient for farmers to manage crops with minimal effort.  

8. AI has provided solutions to many challenges in agriculture including 
pests, weeds, etc. that have a devastating impact on the yields. 

9. The introduction of AI in combination with big data has helped in cur-
tailing the hazards on nature by applying the best possible means to re-
duce the exploitation of the environment.  

10. A greenhouse is still one of the best practices that has value in the 
agricultural domain. AI mechanisms have produced results far better than 
manual operations in terms of maintaining that a greenhouse is working 
properly. 

5.7 CONCLUSION 

AI has been a game-changer in every aspect of the industrial world as well as in 
the agricultural revolution. Every day, more innovations are being discovered 
because of global interest and research. This chapter explained the basics of AI 
including the workings of some of its features and types. The use of AI in various 
agricultural decision-making or modeling is discussed in the succeeding chapters 
as well.  
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6 Machine Learning (ML) 
Driven Agriculture   

6.1 COGNITIVE TECHNOLOGIES 

In simple terms, cognitive technology is referred to as narrow AI due to its target 
applications. It is usually easier to invest in cognitive technology and make a 
maximum profit rather than risking this for AI. Cognition characteristics have 
three types, and this is also known as 3 P's of cognition [1]:  

1. Perceive: The perception of the cognitive technologies is the ability to 
understand the distinct situation it is designed for (i.e. the inputs fed to it 
and the environment it is surrounded with). Examples of these technolo-
gies include image and object recognition and classification (including 
facial recognition), natural language processing and generation, un-
structured text and information processing, robotic sensor and IoT signal 
processing, and other forms of perceptual computing. Advancements in 
neural networks and deep learning have caused perception-focused cap-
abilities of cognitive technologies to progress. 

2. Predict: Prediction has also been a key application of cognitive technol-
ogies and has proven to be successful. The working principle is to un-
derstand patterns and predict the outcomes from different iterations and 
improve the performance by adding each outcome to experience. These 
technologies use various types of machine learning, big data, and statis-
tical approaches to process, analyze, determine patterns or anomalies, and 
suggest succeeding steps or produce results.  

3. Plan: Planning involves the inputs and learning that are gained by the 
machine in making decisions and strategizing future steps by mimicking 
human decision-making. This area of cognitive technologies has a future 
in machine intuition, common sense, emotional IQ, and other factors that 
make humans superior in planning and decision-making. 

At this point, it can be concluded that cognitive technologies are a subset of 
artificial intelligence, with a focus on narrow AI or specific tasks [1] (Figure 6.1). 

6.2 INTRODUCTION TO MACHINE LEARNING 

During the 1950s, machine learning (ML) was launched as a method unique to 
artificial intelligence, but it shifted its momentum towards computationally 
achievable algorithms [2]. The science and technology of machine learning focus 

135 



and involve all of the processes that are linked in making a machine able to learn 
from instructions and experiences so as to improve its performance [3]. There are 
various concepts that may inspire certain aspects of biological learning [4–6]. 

The following are some of the definitions of machine learning: 

“Machine learning (ML) is the study of computer algorithms that improve auto-
matically through experience. It is seen as a subset of artificial intelligence. 
Machine learning algorithms build a mathematical model based on sample data, 
known as 'training data,' in order to make predictions or decisions without being 
explicitly programmed to do so.”  

—Wikipedia [7] 

“Machine learning is an application of artificial intelligence (AI) that provides 
systems with the ability to automatically learn and improve from experience 
without being explicitly programmed. Machine learning focuses on the develop-
ment of computer programs that can access data and use this learn for themselves.”  

—Expert System [8]  

For machines, in particular, it can be concluded that a machine “learns” when it 
is programmed in such a way that makes it able to change its structure so that it 
has a chance of improving the future results. 

The possibilities of learning come from the inputs given to a machine or in 
response to external information and thus, the experience of the model adds to its 
level of accuracy. Within the scope of this book, the machine learning process 
can be considered as generally comprised of three main components: 

focus on Narrow AI or task.[1]specific

FIGURE 6.1 AI, ML, and Data Science Techniques  
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I. Input: The input is the data or information that is given to the machine, 
such as sensor data in the case of agricultural application.  

II. Machine Learning Model: A machine learning model is a model that is 
trained on certain training data and is then able to process additional data 
in order to make predictions [7]. It is the main component that performs 
the actual task, and the one with maximum performance quality in terms 
of convenience and efficiency for this particular purpose is chosen 
as there are a number of models/ techniques in machine learning systems.  

III. Output: The output is the result that is derived from a machine learning 
model [9]. 

In general, machine learning is basically a subset of artificial intelligence that 
improves the performance of data analysis [10]. 

ML can also be defined as a technology in which an intelligent machine 
deduces information and knowledge from data using supervised or unsupervised 
learning. In supervised learning, the user plays an active role in guiding the 
machine to learn, while in the case of unsupervised learning, the categorization 
and organization of data are executed without user intervention [11]. 

With the rapid increase in the computing power of the machines and efficient 
big data handling, machine learning has reached new heights while using a set of 
algorithms, tools, and techniques. 

The Industrial Revolution 4.0 has witnessed a growing trend of ML, including 
a wide range of applications, in almost every sector. 

ML replicates the human learning procedure by training on the data by ap-
plying algorithmic learning and then subsequently being able to work on similar 
data trends. Though ML lags far behind human intelligence, there have been 
instances where ML has been on the dominating side depending on the nature of 
the task at hand. 

Taking the example of traditional methods such as Excel, these are not usually 
able to handle a huge amount of data but this is not the case with ML, as it is 
designed with a purpose to become more accurate with the increase in data/ 
information which is fed to the algorithms [12]. 

6.2.1 ML IN AGRICULTURE 

As previously mentioned in detail, agriculture is of global importance, particu-
larly in a country such as India where it serves as the backbone of the economy. 
The growing demands for food due to the increase in population have become 
the primary reason for adopting new and innovative technologies in agriculture. 
Hence, ML is one of such disruptive technologies that have become crucial in 
the application of precision agriculture in achieving its goals. ML is a vital part 
of Agriculture 4.0 as it leverages crop yields, lowers the input cost, and mini-
mizes “losses and risks” by predicting unfavorable conditions like rains, 
droughts, and similar cases. 
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In order for agriculture to avail of the maximum benefits from the latest tech-
nology, agriculture should survive and adapt to changes that are occurring world-
wide. PA has been boosted significantly by the virtue of the knowledge shared to 
farmers by experts who implement ML techniques to the data derived from the 
agriculture and various other sources. Moreover, they infer valuable information, 
and the implicit predictive ability of ML models could be embedded in automatic 
processes such as expert systems [13]. This extraction of meaningful information 
from data has been the plinth for ML introduction in agriculture [14]. 

6.2.2 ML IN WSN AND IOT 

In agriculture, IoT and WSN are the foundation of machine learning models. In 
the context of WSN, a learning model can be a simple parametric function that 
learned from data and a few input variables so as to leverage results. As pre-
viously discussed in Chapter 3 of this book, WSN can consist of smart, het-
erogeneous, cost- and energy-efficient sensor nodes that detect the physical 
environment [15], and transfer this data to a merging centralized unit called the 
base station or sink node for further processing [16], [17]. 

With the advancement in technologies, machine learning has proven to be an 
excellent option in addressing the issues of WSN by applying the same tradi-
tional data to develop networks that are more efficient and can serve as fore-
casting models. In terms of the implementation of ML in WSN, there is a 
multitude of reasons and some of them are mentioned below [2]:  

I. In a dynamic environment, WSN issues are addressed by the ML which 
helps in the optimization of the nodes for better adaption.  

II. ML provides efficient computational possibilities for complex 
environments.  

III. With the introduction of ML in WSN, there has been a boost in precision 
agriculture.  

IV. IoT technologies have improved significantly. 

6.3 TYPES OF ML 

Machine learning models work on the algorithms that are constructed with the 
aim of gaining a self-learning property; thus, ML is categorized as a major area 
of artificial intelligence. “ML algorithms” differ from “conventional computer 
algorithms” that work strictly according to the program created by its developer. 
“ML algorithms” interpret and analyze the input as well as the output (results) so 
that the machine learning model increases accuracy with this progression. The 
advantage of these methods is less dependence of the model on user instructions, 
unlike the conventional statistical methods [14]. The main types of machine 
learning are shown in Figure 6.2 below: 

There are four main kinds of machine learning techniques (illustrated in 
Figure 6.4). These are further examined below: 
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6.3.1 SUPERVISED LEARNING 

Supervised learning is the type of machine learning where an algorithm is 
provided with some training examples so that it can interpret and analyze 
the inputs and their corresponding outputs [14]. Supervised machine 
learning algorithms use labeled training datasets, and the model generates an 
inferred function from the relationship between output, input, and parameters 
of the system [2]. This type of model is ready and qualified after sufficient 
training and is able to work on new input. Moreover, there is a provision in 
modifying the model after comparing the results with the intended/correct 
results [8]. 

The following target values are present in the case of supervised learning:  

a. If a “continuous target variable” is present, then it becomes the problem- 
case of regression.  

b. If a “categorical target variable” is present, then it becomes the problem- 
case of classification. 

Some popular supervised learning algorithms are decision trees, support vector 
machines, neural networks, k-nearest neighbor, Bayesian networks [2], linear 
SVC (support vector classifier), logistic regression, Naive Bayes, linear regres-
sion, support vector regression (SVR), regression trees, and more [18]. A few of 
these supervised machine learning algorithms are discussed below: 

6.3.1.1 Decision Trees 
In the case of decision trees, a predefined set of characteristics is present, and this 
assigns the data points of the dataset according to these characteristics, thus 
forming a predictive model [19]. 

In an easier manner, it can be inferred that decision trees work by repeating 
the process of learning involved in the output in order to predict the output 
labels [2]. 
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6.3.1.2 Support Vector Machines (SVM) 
Support vector machines are very useful in discovering the space-time correlations 
in the datasets by composing set hyperplanes in a feature space that separates the 
data by significant margins by using its algorithms. SVMs are preferred when it 
comes to solving nonconvex unconstrained optimization problems [2]. 

6.3.1.3 Neural Networks 
Neural networks are currently one of the widely used ML techniques that are 
ambiguously inspired by a biological neural network. The simple neural network 
consists of three layers: an input layer, a hidden layer, and an output layer. The 
model consists of a number of nodes called “neurons,” and the connections 
between neurons are called “edges” [7]. Usually, high computations are involved 
in the neural network model [2]. 

6.3.1.4 K-Nearest Neighbor (k-NN) 
Due to the simplicity of the k-NN algorithm, it is the commonly used method for 
supervised learning. In this technique, a test sample data is classified based on the 
labels of nearest data samples using the “minimum-distance classification method” 
into the user-specified k value (k is the number of neighbors to consider) [2], [20]. 

6.3.1.5 Bayesian Learners 
In Bayesian learners, the algorithm requires comparatively less training samples 
than other ML algorithms [2]. A probability distribution is used in Bayesian 
methods to ease the learning of uncertain labels [21], [22]. There are various 
types of Bayesian learners that help the model to learn the relationships better 
like Dynamic Bayesian Networks, Gaussian Mixture Models, Conditional 
Random Fields, Hidden Markov Models, and more. [2]. Bayesian networks are a 
type of probabilistic graphical model that uses Bayesian inference for probability 
computations. [23] 

6.3.2 UNSUPERVISED LEARNING 

In unsupervised learning, the machine learning algorithm is not provided with 
any target variable [14], (i.e. there is no data set to which the algorithm can refer) 
[18]. As there are no labeled datasets or output vectors, the ML model checks for 
similarities in the given dataset. The unsupervised machine learning algorithm 
discovers the hidden relationships and patterns among the variables [2]. 

Algorithms involving clustering and association techniques belong to this 
category of ML [14]. 

In general, there are two types of algorithms in unsupervised machine 
learning [18]:  

I. Clustering: This algorithm refers to the segregation or distribution of a 
dataset into a number of relatively small groups such that the dataset in 
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each group/cluster is more similar to each other than to those in other 
groups. Data points with more similarities are grouped into a cluster and 
likewise, many clusters are formed.  

II. Association: This type of algorithm is focused on finding certain 
relationships between variables in large databases. 

In simpler words, we can conclude that clustering is related to the grouping of 
the data points according to the relatively common attributes or similarities that 
they possess, while association is based on the relationships between the likeness 
of data points and discovering patterns among the attributes of those data 
points [18]. 

Some of the unsupervised machine learning algorithms are: 
Principal component analysis, k-means clustering, dimensionality reduction, 

neural networks / deep learning, singular value decomposition, independent 
component analysis, distribution models, and hierarchical clustering [18]. 
Furthermore, k-means clustering and principal component analysis are the most 
important algorithms [2]. 

6.3.2.1 Principal Component Analysis 
Principle component analysis involves an algorithm for unsupervised learning in 
which the extraction of important information only, referred to as principal 
components, from data is performed. In actuality, principal components are a 
new set of orthogonal variables. Principle component analysis is suitable for data 
compression and dimensional reduction. Usually, in the case of big data, it 
simplifies the process by selecting only significant principal components and 
discarding other lower-order, insignificant components from the model [2]. 

6.3.2.2 K-Means Clustering 
K-means clustering is another method that is used for the classification of the 
unlabeled data using clustering. Clustering is important for the machine learning 
process of the model and is useful in finding trends for a dataset in which the data 
points are fairly similar [24]. 

In this algorithm, the center point of the clusters is calculated, and the data 
points of the dataset are accumulated with the help of “minimum-distance 
classification” based on the similarities. In this case, k refers to the number of 
centroids, and “means” refers to the centroid [20]. 

6.3.3 SEMI-SUPERVISED LEARNING 

Semi-supervised learning is considered as a combination of supervised and 
unsupervised learning, as both labeled and unlabeled data are used to train the 
ML model. Usually, the unlabeled data used in training is significantly larger 
than the labeled data. 

The driving forces in selecting either a supervised or unsupervised machine 
learning algorithms are mainly the data structure, size of data to be handled, and 
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the application scenarios [18]. According to many machine-learning researchers, 
the use of semi-supervised algorithms has been discovered to considerably im-
prove the learning accuracy of a model [7]. 

Note: There exists another type of ML that should not be confused with “su-
pervised learning,” and it is known as “weakly supervised learning.” As the cost of 
obtaining labeled data is usually expensive due to the fact of it being hand-labeled 
and not easy to obtain, inexpensive training labels that are noisy, limited, or 
imprecise are used, and these are able to produce a satisfactory ML model [25]. 

6.3.4 REINFORCEMENT LEARNING 

In reinforcement learning, the feedback (i.e. reward or error) for every action is 
reflected to the algorithm (known as the reinforcement signal [8]), and this cu-
mulative feedback reinforces the performance and efficiency of the algorithm 
thus maximizing advantages with experience. 

Many reinforcement learning algorithms use dynamic programming techni-
ques [7]. Some popular algorithms are genetic algorithms, Markov decision al-
gorithms [14], Q-learning [22], [26], etc. 

Note: Explaining each algorithm in detail is beyond the scope of this book, so only 
precise and basic descriptions of these algorithms have been mentioned in order to 
make reader aware about the ML techniques used in agriculture  

6.4 ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING 

In the previous sections of this chapter, AI, its subsets, AI techniques, ML, 
subsets of ML, and ML techniques have been explained. There is a common 
misunderstanding that arises when relating terminologies such as artificial in-
telligence, machine learning, artificial neural network, and deep learning. The 
correlations of AI, ML, ANN, and DL have been illustrated in the stacked Venn 
diagram in Figure 6.3 below: 

Originally, an ANN was aimed to solve problems in the same way that a 
human brain would [7]. One of the widely used methods in machine learning is 
the artificial neural networks (ANN), which tries to mimic the human brain in 
performing complex functions such as pattern generation, cognition, learning, 
and decision-making [27]. ANN helps to develop multiple relationships between 
clusters of information and is often preferred in cases where data points have 
nonlinear relationships [24]. There are broadly two categories of artificial neural 
networks: “traditional ANNs” and “deep ANNs.” 

Traditional ANNs: These ANNs are categorized into the supervised models of 
machine learning and are typically used for regression and classification problems 
[28]. The ANN model consists of a number of nodes/units called “artificial neu-
rons” that are connected to one another to form a network, and the connection 
among them is called edges. Both nodes and the edges have weights that can 
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increase or decrease the strength of the signal of a connection as the learning 
continues [7]. In a simple ANN model, the nodes are placed in different layers: the 
input layer (input), one or more hidden layers (learning), and the output layer 
(result) [28]. 

Some example of ANNs algorithms are: radial basis function networks [29], percep-
tron algorithms [30], back-propagation [31] and resilient back-propagation [32], 
counter propagation algorithms [33], adaptive-neuro fuzzy inference systems [34], 
autoencoder, XY-Fusion, supervised Kohonen networks [35], Hopfield networks [36], 
multilayer perceptron [37], self-organizing maps [38], extreme learning machines [39], 
generalized regression neural network [40], ensemble neural networks or ensemble 
averaging, self-adaptive evolutionary extreme learning machines [41], and more.  

In Figure 6.4 below, a simple artificial neural network is illustrated, wherein the 
circles represent the “nodes” (artificial neurons), and the lines joining the arti-
ficial nodes represent the “edges.” 

Deep ANNs: These ANNs are also known as deep learning (DL) or deep 
neural networks (DNNs) [42], and the adjective “deep” in deep learning comes 
from the use of multiple layers in the network [43]. A DNN model is presented in 
Figure 6.5 below. In simple terms, DNNs are ANNs with many hidden layers, 
but the type of learning can be supervised, semi-supervised, or even un-
supervised. Multiple levels of data abstraction are done through these various 

Artificial
Intelligence

Machine
Learning

Artificial Neural
Network

Deep learning

FIGURE 6.3 Subsets of AI Illustrated in a Stacked Venn Diagram  
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hidden layers, and one of the key features is that it sometimes performs the step 
of feature extraction itself. 

In various domains on a particular task, these models have provided results that 
were closer or have even surpassed human expert performance [43]. Furthermore, 
DL models have dramatically improved agriculture [28].  

6.5 GENERAL APPLICATIONS OF MACHINE LEARNING 

Some of the major applications of machine learning are identified in Figure 6.6 
below: 

6.6 SCOPE OF ARTIFICIAL INTELLIGENCE  
AND MACHINE LEARNING IN AGRICULTURE 

There are many sectors in agriculture wherein AI and ML have a tremendous 
scope. Agricultural products, in-field farming techniques, and other related 

FIGURE 6.4 Simple Illustration of an Artificial Neural Network Model  

FIGURE 6.5 Simple Illustration of a Deep Neural Network Model  

144                                                                                  Agriculture 5.0 



processes that cast a direct or indirect impact on agriculture have been re-
volutionized. Some of the sectors where the scope of AI and ML are remarkable 
are mentioned below:  

1. Agricultural IoT: 
The agricultural IoT has been explained clearly in Chapter 4 of this book, 
and one can deduce the importance and impact that it has on the agri-
cultural domain. The implementation of AI and ML in IoT has augmented 
its performance.  

2. Agricultural Data Analysis: 
The huge data that is generated requires meticulous analysis so as to gain 
strong insights, and AI/ML provides the best solution to these needs. 
Some image-based observations developed by virtue of AI/ML are useful 
in disease detection, crop readiness identification, field management re-
source optimization, and more. 
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FIGURE 6.6 Applications of Machine Learning.  
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3. Agronomic Products: 
The judicious use of agronomic products, like seeds, among others, is 
significantly improved by these technologies, as intelligent decisions are 
recommended to the farmer and these are all based on influencing para-
meters such as soil condition, weather, market trends, customized needs of 
a specific farmer, etc.  

4. Crop Monitoring: 
One of the important aspects of smart precision farming is crop 
monitoring, as all other efforts are highly dependent on the effective 
monitoring of crops which could otherwise downgrade the general 
agricultural outcome. AI and ML used in technologies like hyperspectral 
imaging, 3D laser, remote sensing, etc. have made crop monitoring easy, 
convenient, and accurate.  

5. Agricultural Automation: 

AI and ML have made automation in agriculture possible, so agricultural prac-
tices have drastically improved as compared to the time when human efforts 
were heavily relied on. There are numerous areas in agriculture where AI has 
played a huge role in automation. 

Some of the processes like irrigation required a vast experience and knowl-
edge of farming; however, precision in this process was not manually possible. 
With the development of an AI/ML-based model that automates irrigation, water 
wastage has been notably reduced, and optimum irrigation has increased the 
overall yield [44]. 

6.7 APPLICATIONS OF AI AND ML IN AGRICULTURE 

AI has proven to be one of the effective and strategic solutions for the current world 
scenario of fewer resources and enormous demand. To a great extent, the ex-
pectations of farmers have been met, and the key reason is an increase in pro-
ductivity. In the past, one could not have imagined that AI algorithms could 
precisely predict and galvanize an agricultural revolution [45]. Smart farming 
powered by AI/ML high-precision algorithms keeps farmers at par with the tech-
nological world and has substantially contributed to the agricultural realm [44], [46]. 
Some of the individual applications of AI and ML are elucidated below: 

6.7.1 SOIL MANAGEMENT 

Soil is a heterogeneous natural resource that is most essential in agriculture, and 
knowledge about soil is necessary for improving agricultural yield. There are 
processes involved in soil that are complex in nature as well as mechanisms that 
need strenuous efforts to understand. Information about available soil should be 
accurate in order to gain proper soil management. The data of agricultural soil 
properties, such as the estimation of soil drying, condition, temperature, and 
moisture content, etc. are fed to an ML model that produces a reliable solution 
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for providing valuable insights. Hence, soil management becomes straightfor-
ward in order to avail maximum benefits for agricultural purposes [28]. 

Examples of this technology include Trace Genomics – machine learning for 
diagnosing soil defects, similar to the Plantix app [47]. California-based com-
pany Trace Genomics provides soil analysis services to farmers. Its lead in-
vestor – Illumina – helped develop the system which uses machine learning to 
provide clients with a sense of their soil’s strengths and weaknesses. After 
submitting a sample of soil to Trace Genomics, users reportedly receive an in- 
depth summary of their soil contents [48]. 

6.7.2 SMART IRRIGATION SYSTEM 

AI-Powered smart automated irrigation systems are capable of providing con-
stant precise and optimum irrigation necessary to maintain desired soil condi-
tions. This reduces water wastage, labor costs, production costs, and increases 
overall yield. Many scientists believe that the judicious use of water in these 
irrigation systems is likely to produce a global impact on water [46]. 

The estimation of evapotranspiration is necessary to design and manage a 
smart irrigation system, but it is a complex process to accurately calculate. This 
problem is solved by AI and ML algorithms that precisely estimate evapo-
transpiration [28]. Examples of this technology include Cultyvate [49], DIGI-
TEUM [50], etc. 

6.7.3 WEATHER FORECASTING 

Agriculture is highly dependent on favorable weather conditions, and any un-
desired alteration has dire consequences on productivity. Weather forecasts be-
come immensely important so as to avoid any of the issues that can cause 
detrimental effects. There has been massive progress in the accuracy of weather 
forecasting due to the implementation of the AI algorithms and hence, AI in-
directly contributes to the agricultural arena [14]. 

Seasonal forecasting models help in improving agricultural accuracy and 
increasing productivity. 

These models are able to predict upcoming weather patterns months ahead 
of time in order to assist the decisions of farmers. Seasonal forecasting is 
particularly valuable for small farms in developing countries such as India, 
which is rain-dependent. Examples of this technology are IMD, ViSeed, 
NEWA [51], etc. 

6.7.4 AGRICULTURAL DRONES 

Drones have applications in various sectors, including the agricultural arena. 
With AI implementation in drones, its application in PA has significantly in-
creased as it is convenient for a farmer to operate. Drones help in various op-
erations like data collection, crop and field monitoring, disease detection, many 
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PA practices such as spraying inputs, surveillance, etc. Examples include Sky 
Squirrel Technologies Inc. – a leading company that has introduced drones for 
high vineyard crop yield and reduced overall cost. Algorithms integrate and 
analyze the captured images to provide a health report of the crops [52]. 

6.7.5 AGRICULTURAL ROBOTS 

The aim of AI has always been to minimize human efforts by using disruptive 
technology. The agriculture realm is one of the important fields of the world that 
needs automation and smart devices that can perform functions that traditionally 
needed human intervention. Companies are developing and programming au-
tonomous robots that can handle essential agricultural tasks, such as harvesting 
crops at a higher volume and faster pace than human laborers [46]. Blue River 
Technology (John Deere) has developed a robot called ‘‘See & Spray’’ which 
reportedly leverages computer vision and ML to monitor and precisely spray 
herbicide only where needed. Another example is “RIPPA” which exterminates 
pests and weeds [53]. 

6.7.6 TACKLING THE LABOR CHALLENGE 

Reportedly, the lack of laborers has led to millions of dollars of revenue losses in 
key farming regions. Examples of such efforts include, “Harvest CROO 
Robotics” for crop harvesting [52]. Harvest CROO Robotics developed a robot 
to help strawberry farmers pick and pack their crops. It claims that the robot can 
harvest eight acres in a single day and replace 30 human laborers. The robot 
grasps the leaves, inspects the plant for ripe strawberries, and then plucks the 
ripe ones. 

6.7.7 DRIVERLESS TRACTORS 

Combining ever-more sophisticated software with “off-the-shelf” technologies 
such as sensors, radars, and GPS systems, farmers will soon be able to 
hand this century-old machine over to robots. Examples include smart tractors 
that are an AI-based machine with a multitude of technologies loaded like 

FIGURE 6.7 Blue River Technology (John Deere) [44].  
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sensors, radars, GPS systems in order to perform the functions without an 
operator. 

6.7.8 CROP SOWING 

Essentially, AI in crop sowing is used to drive predictive analytics in de-
termining when and how to sow. Crops can also be sowed using AI-aided ma-
chinery at equidistant intervals and at optimal depths. 

6.7.9 CROP MONITORING SYSTEMS 

The introduction of AI and ML in the agricultural practices for crop monitoring 
has a deep positive impact on overall agriculture, as many of the aspects have 
been enhanced. Some of these areas are mentioned below:  

I. Crop Selection and Crop Yield Prediction 
Proper selection of crops plays a key role in determining the yield, and 
the selection depends on various parameters like the topography of the 
region, climate, soil type, composition of the soil, market trends, etc. The 
algorithms used in AI and ML are smart enough to make multi-
dimensional analyses to predict the most appropriate crop that can 
maximize the yield. Commonly used tools for this purpose are ANN, 
k-NN, decision trees, etc. [54–57]. Examples include the following: 
Microsoft is currently working with farmers from Andhra Pradesh to 
provide advisory services using the Cortana Intelligence Suite equipped 
with machine learning and Power BI. The pilot project uses an AI 
sowing app to recommend sowing date, land preparation, soil test-based 
fertilization, farmyard manure application, seed treatment, optimum 
sowing depth, and more to farmers, and this has resulted in a 30% in-
crease in average crop yield per hectare. 
Berlin-based agricultural tech start-up PEAT has developed a deep 
learning application called Plantix that reportedly identifies potential 
defects and nutrient deficiencies in soil. An analysis is conducted by 
software algorithms that correlate particular foliage patterns with certain 
soil defects, plant pests, and diseases. This intel-powered AI program 
tackled the grasshopper menace for tomato crops.  

II. Disease Detection 
Accurate disease prediction has been a breakthrough in smart precision 
agriculture. The AI and ML techniques present a high degree of accuracy 
in comparison to the traditional statistical approaches, as AI/ML models 
have been able to analyze heterogeneous and data with noise better 
[58–60] and, therefore, input is specifically targeted in terms of time, 
place, and affected plants [46]. 
The SVM technique was initially used for disease detection and classi-
fication [61]. Other examples include the algorithms of ML that are used 
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for pattern recognition in detecting diseases by using images of the crop 
leaves [14], [62].  

III. Weed Detection 
Elimination of weeds from the field was traditionally done by sacrificing 
the environment. However, an alternative solution from computer vision 
and ML algorithms improved weed detection and used an AI-based 
machine to destroy this without degrading the environment by herbicide 
application [46].  

IV. Crop Quality Improvement 

AI and ML help in finding new possibilities to improve every step taken in 
agriculture. This is also paving way for improving crop quality. Human lim-
itations in analyzing the data and forming relations among various influencing 
parameters can be an example of a limitation, while an AI-powered machine can 
use this information to recommend a method to improve the crop quality [46]. 

6.7.10 DECIDING THE MINIMUM SUPPORT PRICE (MSP) 

Typically, the MSP is the responsibility of the government in order to provide 
security to farmers, and this MSP varies from crop to crop. It is the minimum price 
that a crop will reap. In order to decide the MSP, there are numerous factors that 
influence this – specifically, total expenses in growing the crop, fluctuations in 
input costs, demand and supply, market price trends, inter-crop price parity, area- 
specific costs like transportation, marketing costs, etc. [63]. This complex, big data 
formed from these factors need a rigorous analysis which conventional methods 
usually fail to perform. Hence, the techniques of ML are best suited and able to 
provide notably valuable insights and a basis for deciding the MSP [14]. 

6.7.11 PRECISION AGRICULTURE TO AGRICULTURE 5.0 

AI and ML have been an absolute driving force for the paradigm shift of 
“precision agriculture” into “Agriculture 5.0.” Real-time data, in combination 
with readily available data, provided to an AI or ML model produces many 
precise decisions for each specific purpose. In some particular tasks, these smart 
machines that are powered by AI were able to outperform a human expert. Such 
examples include the use of computer vision in image analysis. Some benefits of 
AI in PA include optimized and precise use of pesticides, insecticides, and other 
inputs, as well as the reduction in environmental degradation and overall cost 
reduction [46]. 

6.7.12 GREENHOUSE 

AI has a very important application in greenhouse functioning. The AI-backed 
system designed to control and manage the climate of a greenhouse emphasizes 
rigorous analysis of data to achieve high precision. Due to various parameters that 
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need to be considered while adjusting the climate of a greenhouse, it becomes a 
tedious task to handle conventionally. Artificial neural networks (ANNs) and 
fuzzy logic controllers (FLCs) are some of the methods used in this process in 
attaining high accuracy in terms of regulating temperature and humidity [46]. 

6.8 CONCLUSION 

The world has been reshaped by the implementation of disruptive technologies 
like AI, IoT, edge/fog, blockchain, etc. in various sectors, and agriculture is no 
different. ML (machine learning) is a subset of AI that is used to train machines 
to learn from instructions and experiences so as to improve their performance. 
ML has contributed significantly through intelligent automatic devices and 
predictive models that use precise ML algorithms to improve various agricultural 
practices. These predictive models are important in order to avoid any of the 
issues that may cause detrimental effects. ML has enormous applications in 
agriculture that have improved crop quantity and quality, field monitoring, 
management, etc. ML that is applied to agricultural big data that is used in a 
meticulous analysis that provides meaningful insights in making agriculture 
sustainable. AI and ML have been an absolute driving force for the paradigm 
shift of “precision agriculture” to “Agriculture 5.0.” ML has provided oppor-
tunities to enhance various steps in agriculture and thus, has a tremendous scope.   
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7 Data-Driven Smart 
Farming   

7.1 INTRODUCTION 

We dwell in a rapidly growing global village that is connected in a digital world. 
The technological developments from the past decades have resulted in the in-
clusion of technology in every aspect of human life; thus, an enormous 
generation of multimedia, text, or numeric data occurs every day. This type of 
heterogeneous data from multiple sources and platforms contributes to what we 
call horticultural big data [1], [2]. Big agricultural data is characterized by high 
volume, variety, variability, velocity, and veracity which requires a specific 
analytical approach and technology to transform data into solutions that are 
ready to use in agriculture. The use of new developing technologies and hi-tech 
instrumentation in lieu of traditional agricultural practices is also swiftly 
growing. The popularity of the utilization of information and communication 
technologies (ICT) like cloud computing, IoT, drones, UAVs, robots, satellite 
and remote sensing, and sensors in the world of farming has powered a new era 
of the data-intensive paradigm of smart farming [3–5]. Smart farming is an 
advancement that emphasizes the use of information and communication tech-
nology in the cyber-physical farm management cycle. The collection of data, 
analysis, usage in terms of supporting decisions for smallholders, and manage-
ment and sharing has profiled so-called smart farming into a practice that is 
leveraged and operated by data. The planning and monitoring of each task 
concerning irrigation, weather, fertilizer, or chemical spray and harvesting and 
storing all of this information to make better decisions in the future have itself 
led to a mammoth amount of data for each second of the task. Data-driven 
precision agriculture is the use of big data in supplementing on-farm precision 
agriculture — meaning having the right farm data at the right time in order to 
make better decisions to improve long-term profitability. This provides farmers, 
ranchers, and producers with key decision points using various data, such as 
planning, pre-planting and planting, in-season, and harvest data in a more in-
teractive and meaningful way [6–8]. 

Big data is expected to cause changes to both the scope and the organization 
of farming. The agribusiness strategies and stakeholders have shifted their focus 
to new algorithm development, reinventing new solutions to win farmer con-
fidence [2]. Application of big data is driven by the need for new technologies to 
achieve certain goals (pull factors) and thrust of new technologies in enabling 
people and organizations to achieve higher or new goals (Push Factors) [9], [10] 
(Figure 7.1) (Table 7.1). 
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To intensify the adoption of data-driven agricultural systems for increased 
productivity, including providing strategic direction, data availability, improve-
ment of precision agriculture efforts along with its global adoption in private and 
public sector, data-driven agriculture is currently being added to the Open 
Government National Action Plan 3.0 as part of the Global Open Data for 
Agriculture and Nutrition (GODAN) [12] initiative in the US. Big data-based 
smart agriculture is a major tool in the sustainable handling and managing of 
threats, challenges, and risks in the context of climate change, diseases, and pest 
attacks. Therefore, it is necessary to clearly understand the proper use of big data 
management tools and techniques to address the challenges of crop cultivation 
and animal and farming management. 

7.2 COLLECTION AND MANAGEMENT OF REAL-TIME  
AGRICULTURAL BIG DATA 

Data is a prospective tool for making decisions on the basis of an analysis of relevant 
situations. The use of data in driving the farming practices in a sustainable manner is 
now the focus of researchers, so the maximum output is produced from a small, 
arable piece of land [13]. A significant amount of data is created instinctively in the 
agricultural process during different stages ranging from seed sowing to harvesting. 
The collection and monitoring of real-time agricultural data are mostly automated 
with the use of drones, sensors, satellites, smartphones, scientific instruments, 
UAVs, and this is referred to as “crowdsource” [14], [15]. 

Companies like John Deere, Dow, and Monsanto are using data analytic 
techniques to develop tools and technology that are capable of making the right 
decisions at the right time as well as following a scientific procedure with the 
help of data [16]. Data should be collected from many sources and for each 
specific farming process. Data generated by the farming process can differ in the 

FIGURE 7.1 Estimated Data Generation by Average Farm/Day [11].  
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type, amount, and source [17], [18]. The type of data collected from the farm 
includes information on planting, spraying, materials, soil-related data, inter-
cultural management-related data, climate-related data, long-term census data, 
harvesting data, cropping pattern data, agribusiness data yields, in-season 

TABLE 7.1 
Summary of Push and Pull Factors that Drive the Development of Big Data 
and Smart Farming [10]    

Push Factors Pull Factors  

• General technological developments 

• Internet of Things and data-driven technologies 

• Precision agriculture 

• Rise of ag-tech companies 

• Business drivers 

• Efficiency increase by lower cost price or better 

market price 

• Improved management control and decision- 

making 

• Better local-specific management support 

• Better coping with legislation and paperwork 

• Dealing with volatility in weather conditions 

• Sophisticated technology 

• Global navigation satellite systems 

• Satellite imaging 

• Advanced (remote) sensing 

• Robots 

• Unmanned aerial vehicles (UAVs) 

• Public drivers 

• Food and nutrition security 

• Food safety 

• Sustainability 

• Data generation and storage 

• Process-, machine-, and human-generated 

• Interpretation of unstructured data 

• Advanced data analytics 

• General need for more and better 

information 

• Digital connectivity 

• Increased availability to agricultural 

practitioners 

• Computational power increase  

• Innovation possibilities 

• Open farm management systems with  

specific apps 

• Remote/computer-aided advice and decisions 

• Regionally pooled data for scientific research 

and advice 

• Online farmer shops     
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imagery, soil types, weather, and other practices. In general, there are three 
categories of data generation [6], [19]:  

(i) process-mediated (PM), 
(ii) machine-generated (MG), and 
(iii) human-sourced (HS). 

PM data is the traditional business data that results from marketing, purchase, 
profit, and investments done on a particular agricultural task. It is rather struc-
tured data and includes transactions and reference tables. This data is stored and 
processed using relational databases or a business information system. 

MG data is boosted from the site-specific management sensors, agricultural 
machines, IoT, GPS, smartphones, etc. This type of data ranges from simple, 
digital numerical data to highly complex multimedia data like videos, images, 
and maps with high volume and variety. With the use of modern technology and 
instrumentation in farming, this data is increasing day by day and sophisticated 
storage systems, databases, web servers, web-based APIs, and application soft-
ware are employed to manage, process, and analyze this. 

HM data comprises data that is related to human experiences and expert opi-
nions, that are recorded in books and works of art, and later in photographs, audio, 
and video. Moreover, this information is now digitized into refined knowledge 
management systems. Census and social network data also play a vital role in 
recording or sharing the information [19], [20]. Government agencies have come 
up with many dedicated organizations that openly share datasets for the use of 
public research [21]. FAO developed a system entitled to Agricultural Metadata 
Element Set (AgMES) to handle the huge agricultural phenotypic and genomic 
data related to plant growth, diseases and pest resistance, and high yield features 
that are necessary for developing the ideal variety [22], [23]. Big Data Coalition, 
Open Agriculture Data Alliance (OADA), AgGateway, public institutions like the 
USDA, the AgriPrice Book developed by North America Strategic Institute, and 
Citizen Science developed by CGIAR [24] for promoting climate change and food 
security management are examples of other initiatives. ICAR has pioneered the 
initiative to start automating and digitizing agriculture by spearheading colla-
borations with IITs, CDAC, NBSSLUP, CRIDA, IASRI, IARI, state departments, 
CIAE, CSWCRI, IISS, and NRSA warehousing and development of digital da-
tabases called data lakes (centralized repository), HDFS and interpolation of the 
data on a real-time basis using data analytics tools and techniques like ML, Data 
Mining, Statistical software’s [25]. 

The whole process from data capture to decision-making and data marketing 
[20] is referred to as a data chain. Figure 7.2 presents all of the farming activities 
for which data has to be managed for farm management below: data applications 
in smart farming, activities, and the key issues corresponding to each stage of the 
big data chain. With US$64.5 billion investments in venture capital funds 
technology start-ups in 2015, a total of 7% of this was earmarked in agriculture- 
related start-ups [26], [27] (Table 7.2). 
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7.3 TRANSFORMING FIELD DATA INTO MEANINGFUL  
INSIGHTS 

After the collection of pertinent data, the most important task is to draw 
meaningful insights from it. Finding the appropriate methods and tools that suit 
the data format and mines the data deeply, intelligently, and efficiently is an 
unquestionably crucial step. Different software and computer programming 
languages and tools have been developed to interrogate data. Languages like 
Python, R, Scala, etc., and sophisticated software tools like SPSS, Rapid Miner, 
and Weka have significantly helped in statistical and predictive analyses [31]. 
When the results are marked out, decisions can be made accurately [32], [33]. 
A series of operations is carried out before generating decisions, as illustrated in 
Figure 7.3. The presence of data from multiple sources is managed according to 
its format and size in data warehouses, local databases, or cloud servers. 
However, it is possible to gather data that is corrupt, incompatible, or has 
missing values (i.e. data-rich, information-poor (DRIP) can occur, but appro-
priate cleaning and data preprocessing techniques are used to filter the necessary 
data [34], [35]. In the data analysis stage, caution should be practiced when data 
originate from multiple sources and are of different formats. Data fusion can be 

Planning 
Data

• Seed Selection
• Weed Control 
• Pest-Disease Control

Pre 
Planting 

Data

• Fertility Data
• Tilage Data

Planting 
Data

• Plant Population Dynamics
• Seed Depth
• Timing

In Season 
Data

• Disease and pest Emergence
• Crop Diagonistics
• Quality and Market Factors

Harvest 
Data

• Equipment
• Crop Marketing and Post harvest Control
• Yeild Amount

FIGURE 7.2 Data Management Required for Various Tasks.  
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defined as a combination of data attained from a plethora of sources (e.g. IoT, 
social networks sensors, etc.) in different formats [36]. These big data streams 
are mined to arrive at mean worthwhile and suggestive conclusions to initiate 
smart actions. Data fusion techniques have been advantageous and serviceable in 
robotics, complex machinery management, safety and operations, crop mon-
itoring, and remote sensing. Data fusion can come in the form of either raw data 
fusion (source data), feature-level data fusion (based on important and effective 
features), or decision-level data fusion (interrelations and patterns in data for 
decision-making). The combination of data obtained by multisensory networks 
with a data fusion framework enables faster and lower-cost processing, in ad-
dition to reducing the level of uncertainty and hence, guaranteeing higher re-
liability. These data can be fused in a variety of ways – for instance, algorithms 
of high-level fusion techniques include the Bayesian theory, fuzzy logic, artifi-
cial neural networks, Excel, etc. [37], [38]. Certain fusion methods made in 
precision farming like Radar and optical data raw sensor data, [39] remote sensor 
and GIS data fusion, spatial data from GPS [40], UAVs [41] and temporal data 
from sensors, [42] and many more have surfaced. For every case of crop and 
disease, spectral or fluorescence imaging techniques are available to produce 
user-friendly information and automate infection assessment by employing data 

TABLE 7.2 
State-of-the-Art Big Data Applications in Smart Farming and Key Issues     

Stages of the Data 
Chain 

State-of-the-Art Big Data 
Applications 

Key Issues  

Data capture Sensors, open data, data captured by 

UAVs, biometric sensing, genotype 

information, reciprocal data 

Availability, quality, formats 

Data storage Cloud-based platform [28], Hadoop 

Distributed File System (HDFS), 

hybrid storage systems, cloud- 

based data warehouse [29] 

Quick and safe access to data, 

costs 

Data transfer Wireless, cloud-based platform, 

linked open data [30] 

Safety, agreements on 

responsibilities and liabilities 

Data transformation Machine learning algorithms 

normalize, visualize, anonymize 

Heterogeneity of data sources, 

automation of data cleansing 

and preparation 

Data analytics Yield models, planting instructions, 

benchmarking, decision ontologies, 

cognitive computing 

Semantic heterogeneity, real- 

time analytics, scalability 

Data marketing Data visualization Ownership, privacy, new 

business models    
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mining and clustering algorithms like ANNs, machine learning, or other AI 
techniques, as previously discussed in detail in Chapter 5. 

7.4 PROCESSING AND PREDICTIVE ANALYSIS OF  
AGRICULTURAL DATA 

Growing food scarcity has led to the development of ingenious and transfor-
mational solutions for the incorporation of eco-friendly scientific tools and 
farming machinery. The collected big data can be applied in creating easy-to-use 
and accurate forecasting models to ensure that crop production is at its fullest 
potential. A process called predictive analysis extracts trends and forecasting 
insights from the data. Indeed, the traditional modeling approach was very 
limited; a program and input were given to a computer to merely produce an 
output. For example, a program for the addition of two numbers will produce a 
sum of the numbers as output. 

Predictive analytics embody a diverse set of statistical procedures from data 
mining, predictive modeling, and machine learning. These analyze current and 
historical facts to make predictions regarding future or other unknown events by 
using the data [44]. The goal is to go beyond knowing what has happened in the 
past to providing the best assessment of what will happen in the future, along 
with extract trends and insights [45]. Growing volumes of data, types, as well as 
the curiosity to learn more from data, have impelled more and more organiza-
tions towards predictive analytics as a means to increase their bottom line and 
competitive advantage. Faster and more affordable computing machines and 
GUI-based software has driven predictive analysis to flourish beyond the com-
munity of mathematicians and statisticians. Predictive analysis is used in ac-
tuarial science, marketing [46], banking and financial services [47], insurance, 

FIGURE 7.3 The flowchart of intelligent processing of agricultural big data [43].  
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telecommunications, retail [48], travel, mobility, healthcare, child protection, 
pharmaceuticals, capacity planning, social networking, manufacturing, and 
agricultural sciences [49]. 

The core principle of predictive analytics relies on finding the affinity between 
explanatory and individual variables and predicted variables from past occur-
rences and subsequently using them to predict the unknown outcome [50], [51]. 
Data analysis has a high level of granularity, detail, and, thus, high accuracy. The 
feature of granularity distinguishes predictive analysis from forecasting [52]. 

7.4.1 PREDICTIVE ANALYSIS LIFE CYCLE AND TYPES 

Predictive models use past experiences to develop and train a model that can be 
used to forecast outcomes for different data. The modeled results, in the form of 
predictions, represent a probability of the target variable based on estimation and 
the relationships from a set of input variables. Table 7.3 lists the processes that 
occur in the life cycle of PA below. The processes happening in PA vary from 
descriptive, prescriptive, and decision-modeling [53] (Table 7.3). 

Presently, predictive analysis has become a new business trend for most or-
ganizations. New methods and techniques are proposed to handle the voluminous 
and varied datasets [54], [55]. The approaches and strategies used to conduct 
predictive analytics are an arsenal and can generally be grouped into traditional 
techniques, statistical techniques, regression techniques, classification techni-
ques, and machine learning techniques, as described below: 

FIGURE 7.4 A Conceptual Model of Big Data-Driven Smart Agriculture for 
Sustainable Agriculture [9].  
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7.4.1.1 Traditional Approach 
The traditional approach is a restricted option that uses historical data and 
experiences for the forecasting. Human experts and static models or mathe-
matical equations are the only tools used in this approach. This approach is 
prone to errors, inaccurate, unreliable, and is not dynamic. These methods 
include many time series forecasting techniques and others that are severely 
limited when applied to complex systems: exponential smoothing, moving 
average, Bayesian networks, trend models, segmentation, regression, cross- 
sectional forecasting, extrapolation, queuing theory analysis, etc. This is a 
deterministic approach. Traditional weather forecasting methods use numeric 
weather prediction (NWP), a mathematical modeling based on Bayesian 
probabilistic arguments, which has historically led to accurate weather 
approximations. 

7.4.1.2 Statistical Approach 
Statistical techniques in predictive analytics modeling can range all the way from 
simple, classic mathematical equations to complex deep machine learning pro-
cesses operating on sophisticated neural networks. Multiple linear regression is 
the most commonly used simple statistical method [56]. A statistical model is 
usually specified as a mathematical relationship between one or more random 
variables and other non-random variables. As such, a statistical model is labeled 
as “a formal representation of a theory” [57]. All statistical hypothesis tests as 
well as statistical estimators are derived via statistical models. Customarily, 
statistical models are part of the foundation of statistical inference. This is a non- 
deterministic approach. Finally, this technique forms the foundation for other 
approaches [58], [59]. 

TABLE 7.3 
Life Cycle of Predictive Analytics    

Process Action and Requirements  

Project Definition Scope, objectives, and deliverables of the project 

Data Collection Collection of data from different sources, identifying data sets 

Data Analysis Data cleaning, imputation, and modeling data with the aim of mining out 

important information and arriving at a conclusion 

Statistical Analysis Statistical test to check and validate hypothesis, uses standard statistical 

models. 

Predictive Modeling Automated predictive models for future, best optimal solution, evaluation 

Deployment Predictive model deployment, deploy the analytical results into daily task 

decision-making process, output can be reports and automated action, GUI 

software development 

Model Maintenance Model management, model performance check for reliable results    
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7.4.1.3 Data Mining Approach 
The prediction of future trends for agricultural tasks based on analysis of huge 
text, numeric, or multimedia data and the extraction of important information is 
referred to as data mining (DM). Data mining is known as knowledge discovery 
in a database, and it can retrieve meaningful data/inferences/knowledge from a 
large amount of the data [50]. All of the abovementioned life cycle stages as 
discussed in Table 7.3 are followed in this approach as well. Various techniques 
are used to mine data from drones, IoT, sensors, etc. Some of the popular DM 
methods are clustering (k-means clustering used for simulating daily precipita-
tions and other weather variables of agriculture.) and distance measure 
(Euclidean distance) [60], [61]. 

7.4.1.4 Classification and Regression Techniques 
Models or algorithms that divide data into subsets are defined by the categories 
of input variables. The model is prepared using training data to predict the target 
value. Important terms used in classification techniques include the following:  

• Classifier: an algorithm that maps the input data to a specific target value  
• Classification model: draws a conclusion from the input values data given 

for training; predicts the output labels/categories for the new data or 
test data  

• Feature: individual measurable characteristics of a phenomenon being 
observed; principal component analysis techniques can be used to choose 
features  

• Binary classification: classification tasks with two possible outcomes, 0 or 
1; for example, gender classification (Male / Female)  

• Multi-class classification: classification with more than two classes; in 
multi-class classification, each sample is assigned to one and only one 
target label; for example, fruit can be ripe or unripe  

• Multi-label classification: a classification task where each sample is 
mapped to a set of target labels (more than one class); for example, a crop 
can have fungal infection on both its fruit and leaves 

Regression models are the mainstay of predictive analytics. The aim is to es-
tablish a mathematical equation as a model to interpret the relations among the 
different variables in consideration into continuous real values. Regression 
analysis is used to model the relationship between a dependent variable and one 
or more independent variables. The vital terminology used in regression tech-
niques are:  

• Outliers 

A reading or a value in a dataset that is either very high or very low as compared 
to others present in the data. In other words, when it does not belong to the 
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population, then such an observation is called an outlier. Outliers need to be 
removed to produce acceptable results.   

• Multicollinearity 

When the independent variables are highly correlated with one another, then the 
variables are said to be multicollinear. Many regression techniques are in-
compatible with multicollinearity, as this causes problems in ranking variables 
based on their importance. Conversely, it is problematic in selecting the most 
important independent variable (factor).  

• Heteroscedasticity 

Heteroscedasticity is when an independent variable’s variability is not equal 
across values of the dependent variable.  

• Underfitting and Overfitting 

When we use unnecessary explanatory variables, then this might lead to over-
fitting. Overfitting means that our algorithm works sufficiently on the training set 
but is unable to perform better on the test sets. This is also known as the problem 
of high variance. When an algorithm works quite poorly that it is unable to fit 
even a training set properly, then it is said to underfit the data. This is also known 
as the problem of high bias. Gradient boosting techniques are used for such 
anomalies. 

There are a wide variety of models that can be applied while performing 
predictive analytics. A few of them are mentioned in the table below. 

7.4.1.5 AI- and ML-Based Approach 
Machine learning is a branch of artificial intelligence that was employed to 
build techniques to enable computers to learn. Advanced statistical methods for 
regression and classification form the important pillar of these techniques. Both 
unknown and known events are predicted from complex relationships in data. 
[62]. Ensemble modeling is a usual approach where many of the previously 
discussed techniques above are combined for better results and accuracy. In the 
table, various techniques are identified in addition to regression and classifi-
cation. Text analytics related to precision farming on forecasting websites and 
social websites like Twitter, Facebook are used to mine opinions, emotions, 
and attitudes towards a specific aspect of the agricultural sector – such as crop 
production, government policies, climate changes, and beyond – have been 
possible as a result of build-in tools like Hootsuite insights, Quick Search, 
NCSU Tweet Visualizer, MeaningCloud, Sentiment Analyzer, SentiStrength, 
and Sentigem. Furthermore, “bag-of-words” or the hashtags and buzzwords are 
used to monitor behavior (Table 7.4). 
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7.5 PREDICTIVE MODELING 

Predictive modeling (PM) is the process of utilizing data and statistics to forecast 
outcomes with data models. These models can be used to predict anything from 
sports outcomes, agricultural forecasts, and business predictions. Predictive 
modeling is also often referred to as: 

Predictive analytics 
Predictive analysis 
Machine learning  

Each predictive analytics model can utilize more than one classifier, many 
predictors, or variables, that will affect the probability of various results. Before 
initiating a predictive modeling process, it is imperative to identify the objec-
tives, scope of the project, expected outcomes, and datasets to be used. There are 
two classes of predictive models: parametric and non-parametric. Moreover, 
semi-parametric models also exist, and these constitute features of both. 
Parametric models make “specific assumptions within the finite parameter dis-
tribution.” Non-parametric models “typically involve parameters for prediction 
belonging to infinite distribution sets and are not confined to a normal dis-
tribution, as they rely on continuous data” [63–65]. PM is as common as 

TABLE 7.4 
Some Commonly Used Predictive Analytical Techniques     

Classification Techniques Regression Techniques Machine Learning  

• Linear Classifiers 

o Logistic regression 

o Naïve Bayes classifier 

o Fisher’s linear discriminant 

• Support vector machines 

o Least squares support vector 

machines 

• Quadratic classifiers 

• Kernel estimation 

o K-nearest neighbor 

• Decision trees 

Random forests 

• Neural networks 

• Learning vector quantization 

• Linear regression 

• Logistic regression 

• Polynomial regression 

• Stepwise regression 

• Stepwise regression 

• Ridge regression 

• Lasso regression 

• ElasticNet regression 

• Geospatial predictive modeling 

• Neural networks 

• Deep learning 

• Support vector machines 

• Multilayer perceptron (MLP) 

• Radial basis function 

• k-means 

• Apriori 

• Hidden Markov Model 

• Fuzzy C- means 

• Sentiment analysis or opinion 

mining (for text) 

• Dubbed polarity analysis  

(for text) 

• Natural language processing    
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predictive analytics in the areas of precision agriculture, finance, traffic control, 
fraud detection, weather forecast, and beyond [31] (Table 7.5). 

7.6 CONCLUSION 

Identifying and understanding the key drivers of change in data generated from a 
farm has led to the growth of strategic development in farming practices. An 
increase in food production, as well as revenue from data analytics, is itself now 
a new policy introduced by the government in India [72]. The current challenges 
are the aggregation of data and the cost incurred on the farmers from this 
practice. Collaboration – specifically sharing a variety of data (sensor, streamed, 
historical) – among producers, suppliers, processors, distributors, and the gov-
ernment is essential [73]. Farmers must be enthusiastic about the use of data- 
collecting approaches and learn about the financial benefits of these new systems. 
The pressure on the farmer should be reduced by multinational companies and 
the government by sponsoring these tools and technique implementation. 
Companies such as John Deere, Monsanto, and DuPont Pioneer are leading the 
revolution in precision farming techniques. Tractors can now autonomously 
plant seeds, and both John Deere and Pioneer offer variable-rate seeding, 
therefore, newer and more interesting practices yet in store for farmers. 
A number of start-ups have entered the game in an attempt to diversify [74]. 
Lastly, engineers, practitioners, and researchers can scrutinize future develop-
ment directions and innovate. As described above, supporting agents such as 
robots, sensors, and humans are catering to the complex task of PA, although it 
faces several challenges, as presented in Table 7.6 below:  

TABLE 7.5 
Application-Specific Use of Analytical Techniques    

Agricultural Task Analytic Techniques or Software  

Weather forecasting and irrigation 

monitoring 

Regression (both linear and nonlinear), time series 

(moving average, autoregression, autoregression 

moving average (ARIMA) [66], [67], Deep Thunder 

Diseases and variety classification Artificial neural network, deep learning, classification 

techniques, LettuceBot 

GIS using satellite images, drone 

pictures, or thermography 

Deep learning, ArcGis, Computer Vision, AgriBigCAT 

[12], [68] 

Text mining from social platforms 

(Tweets, Facebook) 

Natural language processing, deep learning [69–71]    
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8 Decision-Making and 
Decision-Support 
Systems   

8.1 INTRODUCTION 

Automated machines, tools, and other intelligent techniques in support of 
farmers for production and management, digital agriculture has flourished vig-
orously. Terms like “smart” and “intelligent” were prefixed to concepts and tools 
in order to show a new paradigm of farming. With massive information coming 
from multiple sources, herein referred to as horticultural big data, learning to 
manipulate and investigate deeper into data to produce smart and realistic so-
lutions and decisions on the part of farmers commenced at the onset of the Green 
Revolution to the present age of farming called Agriculture 4.0. Decision- 
making itself is a new science, and much more is yet to be explored. In decision 
sciences, new standards in dealing with highly complex and profound in-
formation are underway. The process of decision-making is based on elements 
that answer the four “W” questions: Who? (individual or collective), What? 
(strategical, tactical, or operational), When? (proactive or provoked), and How? 
(information-based or intuitive) [1]. Decision support is, thus, a core concern of 
smart farming, and this chapter further expounds on this topic [2]. The process 
of decision-making is coalesced in past experiences, observed data, and analyses 
of the present situation. Decisions are quantitatively or qualitatively made, or 
both. A more complex decision-making process may require a significant amount 
of good judgments and quantitative analysis [3]. It is challenging to transfer 
variable and voluminous data and information into practical actions; therefore, 
platforms like decision support systems (DSSs) are requisite for making precise 
and evidence- and need-based decisions [4]. A formal definition of a “system” is 
finely provided by Wright: [5] “a system is a recognizable, composite dynamic 
entity made up of various discernible subsystems which are related to one an-
other and, as a whole, are capable to perform different tasks in response to 
external inputs in a stable and adaptive way.” Different authors have formed 
different descriptions for a DSS. A few [6] defined a decision support system as a 
data processing and distinguishing process that is based on models with the goal 
of increasing the quality of decisions made by decision-makers. Jones et al. [7] 
defined DSS as “a computerized system for improved quality decision-making 
related to partly structured issues.” Sheng and Zhang [8] described a DSS as “a 
human-computer system capable of collecting, processing, and providing 
knowledge based on computers.” Terribile et al. [9] explained a DSS as “a smart 
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system which is able to provide feasible solutions and decision-making support 
related to particular issues for which data is collected.” Based on the descriptions 
above, a DSS is referred to as a collection of tools, data, and techniques that are 
formed as interactive software and trained to aid in specific decision-making in 
real-time, depending on the type of problem [10]. DSS may range from a simple 
data processing tool or a complex computer-based expert system that extracts 
beneficial information from data, documents, or other compatible sources [11] 
(Figure 8.1). 

The history of DSSs dates back to 1960 [12], and a breakthrough was 
achieved in 1967 care of Michael S. Scott Morton from Harvard University, who 
developed the first Model-Driven DSS to be used in marketing and finance 
management. In 1962, Forrester developed the first computer-based, data-driven 
DSS named SAGE (Semi-Automatic Ground Environment) air defense system 
for North America. 

A productive DSS is characterized by the ease of use, ability to make on-the- 
spot decisions as required, and intelligible display of information in the form of 
graphs, reports, SMS, and smart action, among others. Reliability, adaptability to 
changing environments, flexibility, and accuracy are some important and re-
silient features of a stable DSS. 

The general intentions for setting up a decision support system are [10]:  

1. Ameliorating the efficiency and effectiveness of decision-makers  
2. Acting as a decision-support tool for problems  
3. Assisting decision-makers in managing knowledge  
4. Streamlining the problem-solving process 

Depending on the type of input on which a DSS works, five types of DSSs have 
been cataloged so far [12]–[14]: 

Problem Faced

Qualitative Analysis
Based on Experience &

Judgement

Quantitative Analysis
Based on Data

Decision MadeEvaluate
Alternatives

FIGURE 8.1 Overview of the Decision-Making Process [3].  
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1. Communication-Driven 
Communication-driven DSS is also called group decision support systems 
(GDSS). It includes more than one person working in coordination to solve 
a complex problem. An example of this is online chat rooms or meeting 
platforms like Webex, Zoom, and other instant messaging software.  

2. Data-Driven 
Data-driven DSS are support systems impelled by a huge amount of real- 
time or offline data feeding and high-end ML/AI-based data analytics for 
the generation of decisions. These systems work on huge databases and 
data lakes.  

3. Document-Driven 
These are the commonly used DSSs and operate on specific keyword 
search either on WWW or documents or web-based client/server. This 
helps the user to save time by document analysis depending on the 
requirements.  

4. Knowledge-Driven 
Knowledge-driven DSS are support systems that are designed to mine 
information from stored knowledge bases of gathered procedures, facts, 
rules, etc. Data mining techniques are commonly used in these support 
systems. The typical deployment technology used to set up such systems 
could be client/server systems, the web, or software running on stand- 
alone PCs.  

5. Model-Driven 

Model-driven DSS are complex decision support systems used to analyze data in 
a similar fashion as that of data-driven DSS. Ml/AL models are built to analyze 
data and optimize the decision time in order to produce accurate and reliable 
results. These DSSs can be set up via software/hardware in stand-alone PCs, 
client/server systems, the web, or APIs. 

The application of DSS has found scope in diverse scenarios ranging from 
marketing, medical health, education, finance, customer support, agriculture, 
flight systems, industrial process, and beyond. 

8.2 INTELLIGENT AGRICULTURAL DECISION  
SUPPORT SYSTEMS (ADSS) 

Farmers may encounter various issues when relaying the right decisions in ac-
tivities relating to the economy, crop, sowing and harvest, livestock, or en-
vironment. Present-day farming decision-making processes have become quite 
complex because of various external factors affecting the farming system. Due to 
the use of sensors, satellites, GIS, agri-drones, robots, sophisticated machinery, 
and IoT (i.e. a digital agriculture) substantial information flow has occurred. 
Managing such data and proving feasible solutions for crop, disease, or har-
vesting matters is becoming a fascinating area of research for the government, 
scientists, and corporate sector and has led to the advent of new standards for 
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farming. An agricultural DSS provides all of the tools and techniques required 
for the decision process under one roof; therefore, it is best to optimize massive 
information and generate outputs for enhanced agricultural production [15], [16]. 
Smart agricultural DM processes usually require both experience and expertise 
when it comes to a deep investigation of big data [3]. Agricultural support 
systems play a key role in 21st-century precision farming, as today's farming 
systems have become more intricate because of the inclusion of various biolo-
gical, chemical, and physical systems – a vast information explosion. These 
programs will aid the farmers in preventing losses by guesswork as well as in 
gaining more access to minute details and issues. Computer-aided DSSs are 
capable of dealing with sensitive and complicated data and calculations in a 
fraction of a second, thus providing an error-free and reliable recommendation to 
the user [3]. Nonetheless, crop simulation models should not be confused with 
DSSs [17]. An ADSS can benefit the growth of Agriculture 4.0 by facilitating the 
collection, organization, and integration of indispensable information for crop 
production. It analyzes the inputs and recommends the most appropriate solution 
or action. Mathematical or analytical models, knowledge- and data-driven 
models are quite frequently used in PA [11]. Decisions taken by an ADSS can 
be of the following classifications: strategic, tactical, or operational. These three 
types differ in temporal and spatial scale. 

Strategic decisions are effected by farm owners or authorities, who are con-
tracted to this for at least a year, and these decisions are mostly related to change 
of crop varieties, crop rotation, and change of sowing area. Tactical management 
decisions are made on daily basis and are concerned with crop health, soil health, 
nutrient requirement, disease and weather monitoring, and irrigation. Operational 
decisions encompass timely responses to unheralded events at the crop or within- 
crop levels, such as postponing a fungicide spray because of rain (Figure 8.2). 

8.3 FEATURES AND WORKINGS OF AN INTELLIGENT  
AGRICULTURAL DECISION SUPPORT SYSTEM (ADSS) 

The development of decision-making systems in precision farming has mostly 
been ignored in the past decades [18], [19]. ADSS is accelerating the ad-
vancement of Agriculture 4.0 and has added more functionality of automation. 
To get the most out of an ADSS, it is important to understand its workings [11] – 
which follows the four “W” questions, as mentioned above. Decision-making 
starts with identifying the specific problem to be addressed – for example when 
irrigating a crop, relevant information and data will be gathered and stored (e.g. 
soil moisture, amount of rain, crop stage, and weather); techniques will be used 
to impute data and clean it from unnecessary noise. This data will be analyzed 
and interpreted using either statistical or cognitive approaches or rules, as de-
scribed in the previous chapter, and the most possible and appropriate set of 
realistic solutions will be recommended in the form of a decision. The decision 
made by the support system should be beneficial, cost-effective, easy to im-
plement, and in accordance with technical and legal constraints. The decision 
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phase marks the end of the problem-solving process. Each step should be fol-
lowed in order to reach the best decision. This whole problem-solving process is 
supported by the three important components of a DSS – precisely, the database 
(or knowledge base or the data storage component), the model (the decision 
context and model development as per user criteria), and the user interface (to 
display outputs in the form of a computer, mobile, website, etc.) [14]. The choice 
of hardware, platforms, or the usage of developing language shall be customized 
to suit the needs of farmers, or one should trust the skills of a DSS developer or 
programmer. Figure 8.3 further illustrates the abovementioned operations: 

An efficient decision support system is characterized by the following ad-
vantageous features depending on the area of its application [20]: 

FIGURE 8.2 Decision-Making in ADSS [1].  

FIGURE 8.3 An ADSS Showing Components along with the Workings, Modified 
from [11].  
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1. Competent in making reliable and realistic decisions  
2. Able to decide depending on real-time requirements  
3. Adept in managing collected data on a cloud or a database 
4. Capable of searching or analyzing collected information without con-

suming much time  
5. Proficient in providing support for big data and interpreting analytical and 

modeling techniques  
6. Versed in automating the integration of all of the outputs of each working 

phase to produce the best decision  
7. Equipped in promptly notifying users in the form of SMS, graphs, or other 

alerts, as defined  
8. Intelligent enough to save the decision history for farmer reference and 

also updates this frequently 

DSSs have fairly contributed to precision farming as other developed support 
systems have hardly been practical because of the high-cost burden on the 
farmer, lack of trust, inexperience, limited functionalities, and other un-
expected effects [21], [22]. Economic benefits arising from the use of DSSs 
have not been appreciable and, thus, the direct adoption of ADSS is truly weak 
at only up to 3% of professional farmers in a single country [23], and the 
indirect adoption or service provided by the government or agricultural de-
partments is growing at a good pace [24]. Efforts are still needed to push for 
the popularity of ADSS in managing agricultural tasks. A trade-off has to be 
achieved in the development of support systems that are multipurpose, af-
fordable, and quick to respond. 

8.4 INTELLIGENT DECISION-MAKING USING AI, ML, AND  
IoT FOR FARMERS 

DSSs which carries out heuristic and cognitive decision-making and are based on 
AI, ML, or other intelligent agents’ technologies are called intelligent decision 
support systems (IDSS). The growing field of decision engineering considers the 
decision as an engineered object that uses engineering design and develops rules 
for coming up with decisions [25]. An IDSS should act like a human consultant: 
it primarily serves as support for decision-makers by using gathered data and 
interpreting different circumstances and subsequently proposing appropriate 
recommendations and actions. The intention of AI-ML techniques and data 
collection sources like IoT and sensors is only to improve task performance in 
terms of minimizing time and human interaction while maximizing accuracy 
with the decision system [26]. A well-built knowledge base improves the con-
sistency of IDSS when logical and cognitive processes are applied to decide 
upon uncertain and random phenomenon [27]. A range of AI and ML techniques 
as explained in previous chapters are applied as required by an application. The 
decision science in precision farming has reached new heights with the help of 
intelligent agent approaches. 
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8.4.1 THE RIGHT INFORMATION AT THE RIGHT TIME  

FOR THE RIGHT DECISION 

Different farming decisions will call for different types of input information. For 
example, the task of irrigating a field will require both spatial and temporal, site- 
specific inputs like the type of crop, its water requirements, level of moisture, 
and weather data. Automated weather stations with soil moisture sensors and 
other site-specific information (e.g. type of soil, location) facilitate this kind of 
information. Any errors, time lag, and uncertainty will lead to wrong decisions. 
The IDSS is based on this surrogate information; the right information should be 
supplied at the right time for right decisions. 

8.4.2 SOME COMMON AGRICULTURAL DSS 

For global sustainable agriculture, crop production, improvement of farm income, 
and the reduction of hazardous effects on the environment are the three goals of 
Agriculture 4.0 [28]. DSSs are an effective tool in achieving these goals. Integrated 
farming (whole farm approach), integrated production (focus on crops), and in-
tegrated crop management (focus on the health of crops) have been approved to 
shape and perform farming activities in accordance with the site-specific farm 
needs [29]. The development of multipurpose ADSS has been advanced globally 
for diverse applications, including the incorporation of different technologies for 
high-precision decision-making. For various applications like seed sowing, har-
vesting, price forecasting, irrigation management, weather forecast, smooth op-
eration of machinery, livestock rearing, transportation, storage, variable fertilizer 
application, chemical spray, among others, different DSS have been made by re-
searchers and private organizations. With the initiation of the Digital India 
Revolution, many states of the country have now invested in the development of 
digital decision support systems for farmers. The Department of Agricultural 
Research and Education (DARE) and the Indian Council of Agricultural Research 
(ICAR) have started the implementation of DSS and has made data available to all 
those under the National Data Sharing and Accessibility Policy, 2012, and support 
systems [30] like Rainbow, Gramseva: Kisan (Mandi Prices), Market Watch, 
Mandi Trades, U-Agri (CDAC), Krishi Vigan Kendras were set up to enrich 
agriculture. Private sectors have also pioneered intelligent, self-evolving systems 
such as smartfarm (CropIn), Fasal [31], but these are usually not affordable. Policy 
briefs survey reports from ICAR-NAARM (National Academy of Agricultural 
Research and Management) show the positivity of Indian farmers regarding the 
popularity of DSS and smart farming approaches like IoT and AI [32]. Similar 
attempts have been done globally: the Food and Agriculture Organization of the 
United Nations has significantly contributed to the decision engineering sector 
(CropWAT for irrigation management, CLIMWAT, Crop Information system) 
[33]; the USDA-ARS Agricultural Systems Research Unit (ASRU), in a colla-
borative effort with the Colorado State University (CSU); (Great Plains 
Framework for Agricultural Resource Management (GPFARM)); Australian based 
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DSS: (Whopper Cropper; Yield Prophet); livestock production and management 
(GrazFeed); weather and climate forecasting (Rainfall Reliability Wizard; water 
and land) [34]; crop growth, irrigation, nutrient management, and, most im-
portantly, CottonLOGIC for the Cotton crop); Morocco-based nutrient manage-
ment (Planning Land Applications of Nutrients for Efficiency and the Environment 
(PLANET)); Switzerland pest manage system (SOPRA); US-based (CLIMEX) 
[35]; TropRice for integrated rice crop management; Decision Support System for 
Agro-technology Transfer (DSSAT) for multipurpose crop management [36], [37]; 
web-based multipurpose DSS for weather, crop, and disease management by the 
New York State Integrated Pest Management Program Network for Environment; 
Weather Application, Network for Environment, and Weather Applications in 
collaboration with Cornell University [38] are some notable and commonly used 
support systems. 

8.5 CONCLUSION 

ADSSs have become a major element for the 21st-century farming strategy. With 
further innovation in smart hardware and software as well as the need to grow 
more food, DSS has developed into something more valuable. Combining all of 
the processes – from data fusion, storage, interpretation, to decision-making – 
DSS has become more robust, ergonomic, user-friendly, and accurate. With 
enhanced GUI or easy web-based interfaces that are accessible on smartphones 
and cheap internet facilities, farm management has become convenient, 
and all of the information is available with one tap on a screen. The use of 

FIGURE 8.4 ADSS Framework [4].  
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high-resolution spatial or image datasets and mining using computer vision is 
still new, and many competitors are thriving to succeed in the business. The more 
optimized and effective techniques are employed, the more successful a DSS will 
be among end-users. An ADSS can relatively affect the performance of a 
farming system and may be susceptible to confusion, misunderstanding, or 
wrong analysis. Major revisions are still required in order to enable the decision 
system in dealing with site-specific or plant-part-specific operations and take 
decisions at a micro-scale. A shift in trend towards more real-time-based 
decisions done at a lesser cost has to take place. 
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9 Agriculture 5.0 – The 
Future   

9.1 INTRODUCTION TO AGRICULTURE 4.0 

History has witnessed profound effects due to the industrial revolutions (IR); 
some of which were unforeseen and brought enormous changes. All of the in-
dustrial revolutions are shown in chronological order in Figure 9.1 below, while 
their key attributes are listed in Figure 9.2 and illustrated in Figure 9.3 [1]: 

The term “Fourth Industrial Revolution” or “4IR” was coined by Professor Klaus 
Schwab, the founder and executive chairman of “The World Economic Forum” in 
his book. The “Fourth Industrial Revolution (4IR)” includes all emerging and dis-
ruptive technologies such as artificial intelligence (AI), the Internet of Things (IoT), 
machine learning, deep learning, artificial neural networks, blockchain, cloud 
computing, edge-fog computing, drones, etc. The ingenious methods adopted have 
transformed ordinary objects into smart elements that can be connected to many 
other devices and possess the capabilities of interoperability to adapt to many sys-
tems, thereby, possessing the high potential to make a positive impact on pro-
ductivity and profitability of the agricultural sector [2]. 

The Fourth Industrial Revolution is also known as the era of cyber-physical 
systems (CPS) that are heavily backed by information technology. It is also 
called Industry 4.0 and has been able to solve the prevailing problems with 
these latest technologies [3], [4]. 

In Industry 4.0, technologies implemented in the agricultural sector have been 
a real success, and this novel idea has led to certain unimaginable improvements. 
Agriculture sustaining these changes and adapting according to Industry 4.0 
technologies has given rise to the concept of Agriculture 4.0 [5]. Work was 
done in the context of designing, developing, and implementing technologies 
like artificial intelligence (AI), the Internet of Things (IoT), machine learning, 
deep learning, artificial neural networks, blockchain, big data, drones, robotics, 
and solar energy was termed Agricultural 4.0. [6] 

The increasing demands of the agriculture sector were counterbalanced in 
Agriculture 4.0 by reinforcing agricultural systems with WSN, IoT, AI systems, 
etc. Therefore, it accelerated the journey towards smart agriculture and precision 
agriculture [7]–[9]. Age-old limitations and issues in agriculture were solved 
because the scientific approaches became more convenient and accessible in 
Agriculture 4.0 [4], [7]. Agricultural 4.0 has been able to provide for economic 
farming while increasing yields and productivity [10]. 

Effective management has been achieved with the introduction of IoT and ML 
in agricultural practices [8]. Agriculture 4.0 utilizes a decision support system 
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(DSS) in addition to other systems that are required to contribute information to 
DSS in order to predict weather and the impact of climate on crops and soil [11]. 
Agriculture 4.0 has been the gateway for introducing fully data-driven systems in 
agriculture. This has been explained in depth in Chapter 6 of this book. 

First 
Industrial 
Revolution 
(1IR)

Second 
Industrial 
Revolution 
(2IR)

�ird 
Industrial 
Revolution 
(3IR)

Fourth 
Industrial 
Revolution 
(4IR)

FIGURE 9.1 Industrial Revolutions in Chronological Order  

1IR 

2IR

3IR

4IR

• Started around 1760 in Great Britain.
• Powered by the invention of steam engines.

• Started almost a century after 1IR.
• Shift of craft-oriented production to mass production
• Mass production in various industries like steel, oil, and electric Industries.
• Invention of combustion engine and light bulb.

• Also known as "!e Digital Revolution” started around 1960s.
• Greatest invention semiconductor chips.
• Personal computing and  Internet.

• “!e Fourth Industrial Revolution” based on the technologies of the artificial
    intelligence, machine learning, quantum computing, 3D printing, and the IoT.

FIGURE 9.2 Industrial Revolutions and Their Key Attributes  
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Reduced food wastes and greater eco-efficiency are its primary goals [12]–[14]. 
There has been an exponential growth of the economy because of the design, 
development, and implementation of smart agricultural systems all over the globe 
[15]. Furthermore, this has transformed agricultural domain [5], [15], [16]. 

9.2 NANOTECHNOLOGY AND SMART FARMING 

Nanoscience and nanotechnology are the study and application of extremely small 
things, referred to as “nano” size. Nanotechnology is science, engineering, and 
technology conducted at the nanoscale, which is about 1 to 100 nanometers. The 
concept of nanoscience was proposed by physicist Richard Feynman at an American 
Physical Society meeting at the California Institute of Technology (CalTech) on 
December 29, 1959. It was discovered that particles of some elements at nano-size 
surprisingly exhibit different attributes and functioning as compared to their large- 
size counterparts. Professor Norio Taniguchi coined the term nanotechnology. In the 
1980s, two major breakthroughs like the scanning tunneling microscope in 1981 and 
the discovery of fullerenes in 1985 by Harry Kroto, Richard Smalley, and Robert 
Curl, sparked the growth of nanotechnology in the modern era. Nanomaterials have 
changed the landscape of the development of electronic devices and also entered 
other areas like health, agriculture, rocket building, etc. 

9.2.1 APPLICATIONS OF NANOTECHNOLOGY IN AGRICULTURE 5.0 

At present, the United States of America has invested US$3.7 billion through the 
National Nanotechnology Initiative (NNI) [17]. The USA is followed by Japan and 
the European Union, and these countries have abundant funds – US$750 million 

FIGURE 9.3 Transition to Agriculture 4.0 Modified from (Zhai et al. 2020) [1].  
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and US$1.2 billion including individual country contributions, respectively per 
year. Today, more than 400 companies in the world are active in nanotechnology 
research and development, and this number is expected to rise to more than 1,000 
in the next ten years [17].  

• Fertilizer manufacturing: Chemical fertilizers with nanocoatings like sulfur 
or TiO2 are prepared for a high rate of dissolution, sustained release of 
fertilizer which helps in proper absorption by plant roots rather than getting 
washed off, thus reducing costs and efficiently managing fertilizers and 
environmental damage [18], [19].  

• Silver and gold nanoparticles are mixed with natural biofertilizers like 
Bacillus subtilis and Paenibacillus elgii and have become more efficient as 
these are only required in minute amounts (e.g. one liter for several hec-
tares of a crop) [20], [21].  

• Foliar supply of nanoformulations of micronutrients like manganese, 
copper, boron, iron, molybdenum, zinc, etc. are sprayed or mixed with 
crop soil. 

• Insect and pest management: Applications of various types of nano-
particles, such as silver nanoparticles, aluminum oxide, zinc oxide, and 
titanium dioxide, in an attempt to control rice weevil (caused by Sitophilus 
oryzae) and grasserie disease in silkworm (caused by Bombyxmori and 
baculovirus BmNPV (B. mori nuclear polyhedrosis virus) were studied and 
found useful [22]–[26].  

• Fungicide: Antifungal activity of nanoparticles of zinc oxide, silver, and 
titanium dioxide has been tested for various crop pathogens such as 
Macrophomina phaseolina, and the rate of efficiency was notably high. 
Silver nanoparticles were discovered to be significantly effective even in 
the lowest amounts for resistant fungi.  

• Nano herbicides: Silver nanoparticles were effective in controlling weeds 
and herbs like Eichhornia crassipes.  

• Biosensors: One of the most important contributions of nanotechnology is 
a rather advanced range of sensors using nanomaterials developed for use 
in many agricultural tasks [27], [28]. 

9.3 BLOCKCHAIN-SECURING THE AGRICULTURE VALUE CHAIN 

In Agriculture 5.0, horticultural big data is growing rapidly and plays a dis-
tinctive and critical role in production increment and sustainability. Information 
and communications technology (ICT)-based tools and techniques have provided 
a significant breakthrough in the collection, managing, analysis, and decision- 
making of data [29], [30]. These activities benefit farmers in terms of gaining 
more control over the farm and related activities to be able to produce more in an 
eco-friendly manner [31], [32]. Unfortunately, the biased use of the generated 
and collected data has made such efforts unreachable for farmers. It is every 
organization's goal to use and interpolate the data to suit need and greed, thus 
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ignoring the main stakeholders who are the growers [33]. To avoid such dis-
crimination, the concept of blockchain entered the scene. 

A blockchain is a shared ledger or Open Distributed Ledger Technology 
(ODLT). It can also be named as “one big ledger in the cloud.” The users can add 
information or update this on the basis of the leftover quantity of a particular product 
permanently. These records of information and technology are referred to as blocks. 
Blocks are hack-proof and quite secure. Information related to any product, whether 
valuable or otherwise, can be saved here through the internet. Any change in a block 
has to be approved by the maximum number of stakeholder parties [34], [35]. 
Blockchain is a transformative ICT that has the potential to revolutionize how data is 
used for agriculture [36]. The blockchain represents one of the most promising 
technologies in providing more consistency in the wide areas of the agricultural 
industry. Whether it is applied to managing warehouses, silos, and supply chains 
more intelligently or utilized in the field as a tool to transmit real-time data about 
crops and livestock, there are few aspects of an agricultural operation that would not 
benefit in one form or another from blockchain technology [30], [37], [38]. 

9.3.1 POSSIBLE APPLICATIONS OF BLOCKCHAIN IN AGRICULTURE 5.0 

The following are the notable contributions of blockchain towards Agriculture 
5.0 [39]–[42]: 

1. Farmers, consumers, and retailers will be able to register and share in-
formation with maximum safety, transparency, and speed in chron-
ological order.  

2. The blocks will be visible to all of the parties in the blockchain, and each 
party has the freedom of accepting or rejecting the information.  

3. All of the information about the entire agricultural event cycle in the 
blockchain will help the dissemination of a transparent and trustworthy 
source of knowledge for the farmers.  

4. Real-time data about the seed quality, soil moisture, climate, and 
environment-related data, payments, demand, and sale price, among 
other things, shall be available to farmers under one platform.  

5. Blockchain will help in establishing a direct link between farmers and 
consumers/retailers. It will empower small farmers to organize them-
selves and work together to reach the market without requiring any help 
from middlemen.  

6. This will reduce the problems of low income, as blockchain will provide 
transparency in the supply chain, thus enabling farmers to earn the real 
price for their produce.  

7. This brings forth an effective supply of products, fair pricing, food supply 
chain, and improved product tracking. It will also facilitate farmers to do 
real-time management of the stock.  

8. Information directly from seed procurement to harvest to sale at the point 
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of sale (POS) system can be stored on the blockchain. This will aid 
producers and consumers in quantifying, monitoring, and controlling the 
dangers during the agriculture chain as well as assisting in alleviating 
rural distress in developing countries like India.  

9. Prominent uses of Blockchain help agriculturalists in traceability (or 
checking the journey of their product); crop insurance (insuring their 
crops and claiming damages with insurance companies); transactions 
(simplifying billing, taxes, annual audits); optimized food supply chain, 
food safety, retail, and marketing.  

10. Some famous blockchain start-ups are AgriChain, AgriDigital, AgriLedger, 
Worldcovr, etc. [43]. 

9.4 EDGE-FOG COMPUTING FOR SMART FARMING 

After the implementation of cloud computing in various scenarios like IoT, field 
experts made a thorough assessment in order to find the limitations and areas 
where cloud computing could be improved [44]. It was concluded that, even 
though a cloud provided benefits like high computing performance, huge storage, 
easy and economical connectivity, the performance of cloud computing suffered 
due to the massive rise in devices, data, and communication involved in net-
works. Delays (high latency) caused by centralized resources and the distance 
between devices and the cloud. 

Fog and edge computing were created to overcome/mitigate the limitations of 
cloud computing. Some of the widely accepted explanations are given below:  

• Edge Computing: As the name suggests, “edge” refers to the end nodes of 
a network system. The aim of edge computing is to move the processing of 
data as close to the source as possible so that it reduces overall traffic that 
will be sent to the cloud. Thus, the distance covered by the data from 
source to a processing site is reduced which, in turn, reduces the time (low 
latency). This modification in the working of the system causes a positive 
impact on the overall speed, quality, and performance. 

• Fog Computing: This determines the workings of edge computing. It pro-
vides the necessary resources in the system in order to shift computing closer 
to the edges. It enables storage, computing, and network services between the 
edges and cloud centers. Hence, it upgrades the efficiency of the system. 

As there are many opinions about edge and fog computing, some believe that 
edge and fog computing are the same, as the concept to localize computing (that 
usually, a cloud should perform) in a network is similar for both. 

This difference in opinions has led to a mutually accepted conclusion that is 
based on the location of data processing when it comes to being categorized as 
edge or fog. 

Edge: In this case, the data processing takes place at the edges themselves or 
on the gateways that are closer to the edges. 
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Fog: On the other hand, data processing is done in data centers that are lo-
cated comparatively at a greater distance than that of an edge computing system 
but necessarily closer than cloud computing. 

Some of the important characteristics of edge/fog computing are [45], [46]:  

a. Heterogeneity  
b. Excellent interoperability  
c. Wide geographical distribution  
d. Provisions for edge processing and storage  
e. Better service quality in comparison to normal IoT endpoints  
f. Real-time interaction (comparatively faster than cloud)  
g. Support for large-scale sensor networks 

Table 9.1 mentions the main differences between cloud computing and edge 
computing below [44]: 

9.5 ROLE OF BIG DATA IN AGRICULTURE 

9.5.1 INTRODUCTION TO BIG DATA 

The world today is generating an enormous amount of data every second, and 
this data is constantly being captured and recorded. The sources of data are 
countless, causing this data to be generated in structured, unstructured, and semi- 
structured forms. Mostly, the data produced is unstructured, but some of the data 
is still structured and stored in traditional relational databases or data ware-
houses. The conventional ways of processing, managing, and analyzing the data 
has gone through a drastic change due to big data. The traditional systems did not 
adequately manage the data that was gathered from multiple sources. With the 
advancement in computing power, AI and ML technologies, deep learning, data                 

TABLE 9.1 
Differences Between Cloud Computing and Edge Computing     

Characteristics Cloud Computing Edge Computing  

Computing capacity High Low-medium 

Server size and 

operating mode 

Large, centralized servers Smaller, distributed servers 

Application suitability High computational needs, delay is 

acceptable 

Low latency, requires a real-time 

operation, high QoS 

Communication needs High – devices require a constant 

Internet connection 

Low – devices obtain cache 

contents via edge gateway 

Deployment planning Complicated planning Possible ad hoc deployment with 

little to no planning    
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mining techniques, and more, this big data has made remarkable improvements 
in many sectors – including the agricultural arena. 

With the amazing capabilities of deep analysis, revealing trends, finding 
unseen patterns, discovering hidden correlations, revealing new information, 
extracting insight, enhancing decision-making and automation, among others. 
big data has proven to be of immense importance in smart agriculture [47]. 

9.5.1.1 Defining Big Data 

Note: Big data has been defined in various sections of the book across various chapters.  

Big data is defined as the tremendous amount of data that cannot be analyzed 
with the capabilities of traditional systems due to its size (referring to the number 
of sources that data is derived from) and complexity [48]. The advancements in 
technologies and the introduction of new disruptive technologies like “cloud 
computing and storage” affords the scale, speed, and reliability that big data 
requires in terms of the storage dimension. Massive computations have been 
possible due to the usage of new or improved sets of tools, technologies, algo-
rithms, and paradigms in AI, ML, deep learning, etc. that support management 
and analysis of big data in a distributed manner [49]. 

Apart from the huge amount, of datasets that have volume, velocity, veracity, 
and variety. Big data is a field associated with the collection, organization, in-
tegration, and analysis of this huge data in order to obtain value from it. 

The key features of big data include [50]:  

• Enabling intersections of various unrelated datasets  
• High magnitude processing of enormous unstructured datasets  
• Deducing hidden information 

TABLE 9.2 
Different Units of Data Size      

Data Size Name Symbol Value  

Bit b 1 bit 0.125 bytes 

Byte B 8 bits 1 byte 

Kilobyte KB 1024 bytes 1024 bytes 

Megabyte MB 1024 kilobytes 1,048,576 bytes 

Gigabyte GB 1024 megabytes 1,073,741,824 bytes 

Terabyte TB 1024 gigabytes 1,099,511,627,776 bytes 

Petabyte PB 1024 terabytes 1,125, 899,906,842,624 bytes 

Exabyte EB 1024 petabytes 1,152,921,504,606,846,976 bytes 

Zettabyte ZB 1024 exabytes 1,180,591,620,717,411,303,424 bytes 

Yottabyte YB 1024 zettabytes 1,208,925,819,614,629,174,706,176 bytes    
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9.5.1.2 Big Data Life Cycle 
In order to provide the most valuable insights, the following steps are carried out 
in big data. First, this huge amount of data, which can be of different types, is 
collected. Then, this heterogeneous data is organized and afterward integrated, 
and this also involves the preparation and cleaning of data for analysis. After 
completing all of these steps, the big data is analyzed so as to derive value (any 
useful insight). Many algorithms of AL, ML, and other technologies are used for 
data mining. 

9.5.2 CHARACTERISTICS OF BIG DATA (6 V’S) 

Significant research in the area of big data, including its involvement in various 
fields, has led to a difference in opinion among various experts. Initially, Doug 
Laney defined the 3 V’s (volume, velocity, and variety) of big data [51]. Nearly 
after two decades, the advancements in the technologies led to more V’s being 
added to the big data. Currently, there are 6 V’s that define the characteristics of 
big data:  

1. Volume: 
The fundamental characteristic of big data is the volume of data associated. 
This implies that large datasets need to be stored and processed. There is a 
rapid increase in data growth data leading to a size greater than Zettabytes, 
Yottabytes, or even more, which makes big data management a task that is 
unique from traditional data management. This creates a demand for 
technologies to cope with gigantic data volumes [47], [49], [52].  

2. Velocity: 
According to [52] the velocity characteristic of big data refers to two 
things: speed of growth and speed of transfer. The rate at which the data is 
generated creates a compulsion for fast collection, ingestion, transfor-
mation, loading, and integration processes of data. Velocity can also refer 
to the rate at which the data is processed and analyzed. It refers to the 
speed at which data is being transacted, and the exponential growth of 
data is also associated with the speed of transfer of data [47], [49].  

3. Variety: 
Variety refers to the various types of data and data structures that form big 
data. The data can be structured, unstructured, or semi-structured; there-
fore, this creates challenges in terms of data integration, transformation, 
processing, and storage. Furthermore, there are sub-varieties of structured, 
unstructured, and semi-structured data that add up to the issue. 
Unstructured data has maximum sub-varieties of data, and the fact is that 
90% of big data is composed of unstructured data such as audio, images, 
video files, social media updates, log files, click data, and machine and 
sensor data [47], [52].  

4. Veracity [53]–[57]: 
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This is the most important characteristic of big data. It defines the accu-
racy and meaningfulness of big data. Uncertainty in data is typically due 
to inconsistency, incompleteness, latency ambiguities, approximations, 
etc. A large amount of data makes it challenging to verify the mean-
ingfulness (i.e. possibility of having valuable information) of the data; 
otherwise, the data may be useless or inaccurate. 
Therefore, we need to find an adequate size of quality data that can provide 
essential information upon analysis to impact agriculture [47], [58].  

5. Variability [54], [55], [57], [59]: 
Variability refers to data that is constantly changing, shifting, mutating, 
and modifying. It is one of the important characteristics of big data. 
Variability occurs with time, the application that uses it, and obsolescence. 
Deriving context-related outputs from the big data is the result of its 
variability [58].  

6. Value [53]–[57]: 

This characteristic of big data is the reason for its application and worldwide 
trend. The ultimate goal of using big data is to provide such valuable in-
formation that was not traditionally possible before its existence. The tech-
nique of big data mining to extract insights is the fundamental value of big 
data. Big data is a platform that provides value from otherwise worthless 
data [58]. 

9.5.3 TYPES OF BIG DATA 

Big data has two major sources depending on its generation. It can be machine- 
generated and human-generated. 

According to the variety of data, there are three major types of big data 
[49], [60]:  

I. Structured: Structured type of big data is one that has a predefined 
length, format, and schema of datasets; accordingly, it can easily be 
processed, stored, and retrieved in a standard format. Usually, this 
contributes to 20% of the total of big data. The data is normally in an 
appropriate form to be easily stored and readily accessed from the da-
tabase. Examples include sensors deployed in fields to monitor move-
ment, temperature, light, vibration, pressure, moisture, etc.  

II. Unstructured: In this case, the datasets do not follow a particular format 
and can be in the form of images, videos, audio, etc. This constitutes 
80% of the total of big data. At present, the technologies have upgraded 
to deduce information from such data, as earlier this was not possible. In 
comparison to structured data, retrieving information from unstructured 
big data takes more time. Storing data with such variety and complexity 
requires the use of adequate storage systems. 
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III. Semi-structured: Semi-structured data is the kind of data that is cate-
gorized in between structured and unstructured data, because it some-
times contains both types of data. Semi-structured data is a form of 
structured data that does not conform with the formal construction of 
data models associated with relational databases or other forms of data 
tables; however, it has some organizational properties that make it easier 
to analyze [61], [62]. 

9.5.3.1 Some Other Types of Big Data  

• Real-time data  
• Natural language data  
• Time series data  
• Event data  
• Network data  
• Linked data 

9.5.4 ADVANTAGES OF BIG DATA 

Big data has been a boon in the current scenario of world technologies as it has 
contributed a new significant dimension in the science of data analysis, mining, 
and decision support sciences. Big data analytics includes the methods and de-
vices used to deduce information into meaningful findings by extrapolative/in-
terpolative trend analysis, which is the process of using the data acquired to 
predict trends within and outside of the data range [48]. 

Data science is a multidisciplinary science, and the corresponding analytics 
possess the same traits [50]. Advanced analytic techniques include statistical 
modeling, data/text mining, machine learning, pattern matching, forecasting, 
visualization, semantic analysis, sentiment analysis, network and cluster ana-
lysis, multivariate statistics, graph analysis, simulation, complex event proces-
sing, and neural networks [63]. Examples of data analytics tools are NoSQL, 
Hadoop, R, etc. Hadoop is widely used because it is open-source. 

The agricultural dimension of big data predictive analysis has been explained 
in detail in the chapter on “Data-Driven Smart Farming” of this book. 

9.5.5 FEW APPLICATIONS OF BIG DATA 

Some of the areas where big data has a significant role are mentioned below [64]:  

• Government  
• International development  
• Healthcare  
• Education  
• Media 
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• Insurance  
• Internet of Things (IoT)  
• Information technology  
• Agriculture 

9.5.6 AGRICULTURAL BIG DATA 

The data generated by the technologies like sensors, GIS, IoT, smart equipment, 
drones, etc. in Agriculture 5.0 is called agricultural or horticultural big data. There are 
diverse forms of data constituting agricultural big data due to the multiple sources of 
origin. Important examples include the historical data that provides insights for crop 
selection of a particular year and weather conditions predictions. Other examples are 
the real-time data generated from the sensors (i.e.sensor data). All of the 6 V’s of big 
data are important in agriculture and help in providing actionable insights to im-
proving overall agriculture. This has also paved the way for AI-powered machines to 
be embedded in agriculture. The data generated from devices like sensors, GPS, 
satellites, IoT systems, etc. heightens pertinent knowledge to further improve the 
field. Agricultural big data analysis plays a crucial role, because it is the root cause for 
the data-driven Agriculture 5.0. The various important roles of agricultural big data 
have been reflected in “Section 3.9.1. The Integration of Big Data into Smart 
Agriculture” and also in the previous chapters of this book: Data-Driven Smart 
Farming and Intelligent Agricultural Decision Support Systems [48]. 

9.5.7 USES OF AGRICULTURAL BIG DATA 

Big data has prominent applications in Agriculture 5.0; therefore, it is also re-
ferred to as big data-driven farming. Big data supports higher quality and better- 
informed decisions for both production as well as business. To summarize, a few 
contributions of big data in the agricultural arena are listed below:  

I. Yield/pest/disease/weather predictions  
II. Selection of suitable hybrids  

III. Optimal farming decisions  
IV. Crop recommendations  
V. Intercropping recommendations  

VI. Market price and profitability analysis  
VII. Policy recommendations  

VIII. Operation/equipment/risk management  
IX. Efficient farming practices 

9.6 TRANSITION TO AGRICULTURE 5.0 

From primitive times, the primary motivation of agriculture has been to feed the 
population, but with the advancement in science and technology, the priority has 
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shifted to nourishing the population. Due to the explosion in world population, 
the demand has correspondingly increased. The industrial revolutions have al-
ways produced a breakthrough in the agricultural arena. The implementation of 
precision agriculture, digital agriculture, smart agriculture, intelligent agri-
culture, and finally, the paradigm shift towards “smart intelligent precision 
agriculture” have all been able to achieve aims to a great magnitude. These have 
revolutionized to meet this growing demand and prepare for the future as well. 
As formerly discussed in various previous chapters of the book, agriculture has 
been transformed by technologies at every stage in the past. Modern agriculture 
is completely tech-driven and has a lot to adopt. The section “Smart Intelligent 
Precision Agriculture” in Chapter 2 is referred to as Agriculture 5.0. This entails 
the data-driven Agriculture 4.0 with a reinforcement provided by AI and its 
subsets like machine learning and deep learning. Robotics and artificial in-
telligence (AI) help in mitigating bigger challenges which have been quite 
complicated for humans since the past and hence, spur big solutions through 
disruptive technologies. Smart farming, also known as data-driven farming, 
makes optimal decisions done only after rigorous analysis of the big data. The 
application of robotics to agriculture has risen to a new platform due to highly 
accurate algorithms by AI. Agriculture 5.0 is in the developing phase, and, with 
the advancement of AI, it is surely going to be accelerated. Thus, Agriculture 5.0 
is a way paved for more sustainable agriculture ahead. 

9.7 CONCLUSION 

With more innovations and research developments, the agricultural sector is 
becoming more modernized every day. All of the above-discussed technologies 
are going to help us achieve the goals of an abundance of food with the reduction 
of environmental damage. These technologies have impressively performed 
when applied to farming tasks. The objective of doubling the income of farmers 
with fewer inputs is now a reality. At present, the Agriculture 4.0 revolution will 
soon achieve another milestone and will be referred to as Agriculture 5.0. In this 
stage, farmer income will increase, and he will be able to control his farming 
practices accordingly with the help of these tools and techniques. 
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