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Foreword
 
Precision agriculture technologies have developed over the last three decades to aid 

plant agriculture. This book reviews what has happened in the past, what the cur

rent situation is, and predicts what the future may hold for these technologies. Top 

experts who have contributed to the development of precision agriculture provide the 

information. 

Agriculture must provide an ever-increasing amount of quality food, fiber, feed, 

and fuel for humankind. And it must do this in a manner that is environmentally, 

economically, and sociopolitically sustainable. This will become even more chal

lenging in the future as there is no single technology that can solve this problem. The 

development and proper implementation of precision agriculture therefore can be a 

great help toward achieving this very important task. 

NEED FOR PRODUCTION 

The Food and Agriculture Organization of the United Nations (UN) estimates that 

we will need 60% more food by 2050. This is partially due to increasing population. 

In 2012, the world’s population passed the 7 billion mark. Although the population 

growth rate has halved since its peak, the UN predicts that the world’s population 

will increase to 9.6 billion by 2050. Those extra mouths need to be fed. 

But a bigger cause of the need for the increased production is the changing diets 

of many consumers, especially those in high-population emerging economies. For 

example, the consumption of meat increased about 800% in China from 1978 to 

2008. The move from diets heavy in staple crops to diets that include substantial 

amounts of animal products and fruits and vegetables demands much more produc

tion from plant agriculture. At the same time, the average total calories consumed 

per capita have increased from 2250 in 1961 to 2750 in 2007 and are predicted to 

reach 3070 in 2050. The confluence of more people and more per capita demands 

leads to the need for great increase in plant agriculture production. 

The world depends heavily upon fossil fuels for its fuel, chemicals, and fibers. 

However, easily accessible supplies of oil and gas are finite and we will soon reach 

their limit. In addition, the extraction of fossil fuels from below the earth’s sur

face unfortunately brings carbon to the surface and into the atmosphere, thereby 

increasing the greenhouse effect. Plant agriculture removes carbon dioxide from 

the atmosphere. More plant production is needed to replace fossil fuels and conse

quently to provide the raw materials for biofuels, chemical feedstock, and natural 

fibers. However, increasing such uses of plants could consume agricultural resources 

that could contribute to food production. This again shows the need for increased 

productivity. 

As discussed above, it is obvious that more agricultural production is needed to 

support increased populations and changing diets while reducing fossil fuel depen

dence. By properly responding to spatial and temporal variability in soils, crops, and 

pests, precision agriculture technologies help increase the productivity and efficiency 

vii 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii Foreword 

of plant agriculture. The best way to meet the production needs of the future is to use 

precision agriculture in combination with the best genetics, cultural practices, equip

ment, and agronomic management, to achieve maximum production. 

NEED FOR SUSTAINABILITY 

Humans are now dominating the earth. In order to ensure the health and happiness 

of future generations, we must live in a sustainable manner. There needs to be envi

ronmental, economic, and sociopolitical sustainability. This sustainability can be 

improved through the use of precision agriculture. 

The growing and harvesting of crops remove nutrients from the soil, which must 

be replaced for long-term environmental sustainability. In low-income countries 

where the supplies of fertilizers are limited, they should be applied in the areas 

where they will do the most good. In high-income countries, fertilizers are often 

uniformly overapplied to avoid the economic consequences of nutrient deficiencies 

in any area. The mobility of the overapplied nitrogen and phosphorus can then cause 

those nutrients to be removed from agricultural fields and subsequently lead to drink

ing water contamination or excessive algae growth. Applying the right fertilizers in 

the right place at the right time is important to maintaining a proper crop-growing 

environment without pollution. 

Water is a similar environmental issue. Agricultural irrigation represents about 

70% of humans’ water usage. There are competing demands for our limited water 

resources. Precision agriculture irrigation can help maximize water use efficiency. 

Traditionally, pesticides are applied uniformly in an agricultural field. However, 

insect, disease, and weed pests tend to be spatially variable. Therefore, the uniform 

application of pesticides often results in pesticides being released into environments 

where they are not needed. It would promote environmental sustainability if preci

sion agriculture was utilized and pesticides were applied just where and when they 

are needed. 

Economic sustainability is also promoted by precision agriculture. Inputs such as 

water, fertilizers, and pesticides contribute very significantly to the costs of produc

tion. Reductions in those inputs and increases in quality production from precision 

agriculture can make farming more economically rewarding. There are also second

ary economic benefits in the increased input use efficiency, thus reducing embedded 

energy costs and environmental costs. 

Over half of the world’s population now lives in urban, rather than rural, envi

ronments as the migration to cities continues. A disproportionate percentage of 

the migrants are young adults in search of better economic opportunities and 

more rewarding jobs. Their migration from rural areas has a detrimental effect 

on sociopolitical sustainability in both rural and urban areas. Although the effect 

may be small, the introduction of advanced precision agriculture technologies 

may prove attractive enough to some potential migrants to encourage them to 

remain in rural communities. The infrastructure, personnel, and experience of 

precision agriculture may help reduce the digital divide between rural and urban 

populations. 



 

 

 

 

 

ix Foreword 

POTENTIAL OF PRECISION AGRICULTURE 
TO HELP MEET THESE NEEDS 

Meeting the production and sustainability needs for plant agriculture in the future is 

a difficult task. The greatest chance of meeting those needs is if there is an integra

tion of advances in many areas. There need to be better technologies in genetics,  

cultural practices, weather prediction, equipment, and farm management. Existing 

and to-be-developed precision agriculture technologies must be effectively and effi

ciently integrated into the crop production systems to contribute to increased produc

tion and sustainability. 

The purpose of this book is to facilitate that integration by conveying informa

tion on precision agriculture technology to other researchers and practitioners. The 

chapters are written by experts who have contributed significantly to the develop

ment of precision agriculture technologies. They discuss the developments of the 

past, describe the current situation, and provide some predictions of the likely future. 

ORGANIZATION OF THIS BOOK 

The first chapter gives a brief review of the history of precision agriculture to estab

lish a background to the discussion of particular technologies and applications. The 

next chapters provide details on technologies for sensing, data handling, modeling, 

and control. The technologies, when integrated, are the vital tools needed for preci

sion agriculture to be successful. The following chapters show how precision agri

culture can be used in large-scale agriculture, community agriculture, diversified 

farming, and as a good agricultural practice. Finally, the needs for the future are 

proposed. 

Of course, there is much more information on precision agriculture than can be 

included in one book. The authors have utilized their vast experience and knowledge 

to select the most important and relevant information. I hope you find the book as 

interesting and informative as I have. 

John K. Schueller 
Mechanical and Aerospace Engineering Department 

University of Florida 
Gainesville, Florida 
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1.1 INTRODUCTION 

There is little evidence that the ancients, although they recognized production dif

ferences between fields, considered within-field variation to be worthy of concern 

(Cato, 160 bc). Romans bought land based on their impression of the care of the 

farm, its location on the landscape, and soil characteristics. Farms were fertilized 

using a variety of manures, composts, and the liquid left over after olive pressing. 

Perhaps, owing to the intense workload of performing basic farming practices, little 

thought appears to be given to within-field variability. Often the landowners con

cerned themselves much more with slave or freeman management than within-soil 

differences. Much more attention was given to acquisition of land rather than dealing 

with deficient areas of individual fields (Slavin, 2012). In colonial America and the 

new United States, similar practices were adopted as that of ancient peoples with 

regard to certain crops on certain soils, crop rotation, and the use of manures on 

worn-out soils (Jefferson, 1824). 

1.2 BRIEF REVIEW OF PRECISION AGRICULTURE HISTORY 

When scientists from the new U.S. land-grant colleges first met to discuss agricul

tural school objectives, the very first experimental subject proposed was dealing with 

variability in plot crop yield due to soil heterogeneity (Hatch, 1967). Despite efforts 

to find the most uniform areas possible to conduct field experiments, the problem of 

field heterogeneity continued to confound researchers (Harris, 1920). Serious steps 

forward in improving decisions confounded with spatial variability on a small spa

tial scale began in the early 1920s. Robert A. Fisher started his breakthrough work 

on the foundation of experimental design at the Rothamsted Experiment Station in 

Harpenden, Hertfordshire, England in 1919 (Box, 1978). Over the following 7 years, 

he developed a series of statistical tools used as a foundation for most small-plot and 

even full-field experiments (Fisher, 1935). The use of principles established by Fisher 
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2 Precision Agriculture Technology for Crop Farming 

and the expansion of statistical tools to include problems associated with slopes and 

systematic differences in soils, such as a Latin-square design or the use of replica

tion blocks, have been greatly useful in decreasing the effect of spatial variabil

ity in small-plot experiments for generations of field researchers. However, none of 

these tools is particularly helpful for managing field variability of nutrients, weeds, 

insects, seeding rate, or other management inputs. 

Most of the work in site-specific agriculture conducted since 1920 has concen

trated in crop nutrient management. Soil testing has received a great deal of atten

tion, since it was identified as a means of determining the nutrient supplying capacity 

of soil since the writings of Sprengel (1839). In soil analysis, a soil sample is taken 

from the field, processed to take out small stones, then usually subjected to mixing 

with a liquid extractant, filtered and the nutrient of interest is determined so that a 

relative amount of the nutrient can be compared to the amount correlated with some 

degree of possible crop response. The response can be beneficial to the crop or it 

might sometimes be toxic, depending on the extracted element or compound and 

the amount in the soil (Melsted, 1967). Although laboratory errors are possible, and 

minimized commercially through a system of laboratory checks and blanks (SSSA, 

2004), the greater source of error in determining the usefulness of a soil analy

sis recommendation is from sampling error (Cline, 1944; Reed and Rigney, 1947; 

Hemingway, 1955; Graham, 1959). 

The first known recommendation for soil sampling to address field heterogeneity 

was published by Linsley and Bauer in 1929. Figure 1.1 shows the sampling strategy 

that was recommended for a 12.5-ha field. The inspiration for advising farmers to 

soil sample to 15 cm depth and analyze in a 0.4-ha grid, with additional sample cores 

to a 30 cm depth was related to the effort it took to spread agricultural limestone onto 

an acidic farm field. At that time, the ground limestone was delivered by rail car. The 

transport, usually a horse-drawn wagon, was filled with shovels from the rail car by 

hand, driven back to the farm where the limestone was scooped out of the back of 

the wagon onto the field by hand. With recommended limestone rates well over a 

T ha−1, the labor of sampling was far less than that of applying limestone to areas of 

the field where it was not required. However, the practicality of these recommenda

tions quickly disappeared by the development of mechanical, self-propelled fertilizer 

application equipment. By 1938, there were many fertilizer application machines 

available to farmers and many were regularly used, including broadcast, hill-placed, 

and near-seed-banded equipment (Salter, 1938). Salter references several sources 

where studies of over 20 different types of machines were compared. These early 

machines were small, but they were great labor-saving tools that made laborious soil 

sampling more difficult than addressing field variability. 

The basic soil sample from the 1950s to the present day in many areas is the com

posite sample that represents a field (Melsted and Peck, 1973). Although research

ers familiar with crop nutrient spatial variability included cautions to only include 

relatively uniform, similar soils in a composite sample, sample cores were typi

cally taken from multiple areas of fields described by farmer field boundaries and 

not by soils within them. Melsted and Peck (1973) describe two fields that were 

periodically sampled in a 24.3-m (80-ft) grid pattern from 1961. Figure 1.2 shows 

images of Melsted and Peck, the visionaries who helped build the foundation for 
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FIGURE 1.1  Recommended sampling strategy for a 12.5-ha square field. Rectangles are 

for 0–15  cm surface cores, and circles denote locations for a deeper, 0–30 cm core. The 44 or 

65 designations are for steps between sampling points, because that was the only reasonably  

efficient location producer at the time. (Adapted from Linsley, C.M. and F.C. Bauer. 1929. 

Test Your Soils for Acidity. University of Illinois Circular 346, Urbana, IL.) 

FIGURE 1.2  S.W. Melsted (a) and T.R. Peck (b), the visionaries who helped build the foun

dation for successful variable-rate fertilizer application. 



 

 

 

 

 

 

 

 

 

 

 

 

 

4 Precision Agriculture Technology for Crop Farming 

successful variable-rate fertilizer application. The Urbana field was soon abandoned 

due to urban sprawl; however, the Mansfield site was sampled periodically until 

1994. The data set from this long-term study has been summarized (Franzen, 2007). 

The summary of this data set indicated that initial soil pH and P and K levels in the 

Mansfield site and later the Thomasboro, Illinois site were related to native soil dif

ferences, man-made intervention with tree-rows at Thomasboro and hill-top erosion 

at Mansfield. The data set later included site-specific soybean and corn yield data, 

elevation, satellite imagery, soil electromagnetic sensor data, and fertilizer applica

tion rates early in the study years. 

The early 1960s also saw the emergence of new statistical tools to deal directly 

with spatial variability of soil nutrients. The statistical subfield of geostatistics was 

introduced by a Canadian scientist (Matheron, 1963). Matheron’s approach was 

based on principles outlined by a South African scientist working on gold mining 

spatial problems (Krige, 1951). Thus, terms such as “nugget variance” come to us 

from the gold-mining tradition. Since soil sampling or any sampling within a farm 

field only identifies the small area from which cores, plants, plant parts, or measure

ments are taken, the vast majority of areas within the field are unknown from the 

observed values. Therefore, the values from unsampled areas of the field must be 

estimated or “interpolated” for anything to be done in response to the sampling.  

Kriging is the preferred method to accomplish this (Gotway et al., 1996), although 

to do so requires a minimum sample set of at least 30 observations. The most used 

interpolation strategy used in the United States is inverse distance squared. For a lay

man’s description of interpolation strategy, see Isaaks and Srivastava (1989). 

Initial soil sampling patterns were based on a philosophy of unbiased sampling 

and the lack of locating instruments within fields that are taken for granted today, 

such as radar and especially global positioning satellite (GPS) receiving devices. The 

unbiased sampling approach discouraged taking sample cores from unusual areas or 

in a random manner over the field. Rather, regular grid sampling, with equal distance 

between sampling locations was most recommended, with the Melsted/Peck data set 

being most extensive product of that philosophical approach. The regular grid sam

pling pattern was the most widely researched and recommended approach until the 

1990s (Cline, 1944; Yates, 1948; McIntyre, 1967; Peck and Melsted, 1973; Burgess 

et al., 1981; McBratney and Webster, 1983; Webster and Burgess, 1984; Petersen and 

Calvin, 1986; Sabbe and Marx, 1987). 

Variability of soil nutrients can be the result of natural soil processes, parent 

material differences, organic matter differences, and erosion patterns, but they can 

also be caused by systematic fertilizer application errors (Jensen and Pesek, 1962; 

Franzen, 2007) and land leveling artifacts (James and Dow, 1972; Knighton and 

James, 1985) used to prepare for irrigation. 

Owing to the variability of crop nutrients within fields and the varying degree of 

variation of those properties, the density of soil sampling should reflect soil nutrient 

patterns. Depicting soil nutrient patterns became particularly important as a practical 

issue rather than an academic question with the advent of the variable-rate fertilizer 

applicator in the late 1980s. AgChem Equipment Company of Jackson, Minnesota 

was the first successful variable-rate broadcast granular fertilizer spreader, with 

commercial equipment used in 1988 in central Illinois. The founder and president of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 A History of Precision Agriculture 

the company, Al McQuinn, attended the first International Conference of Precision 

Agriculture in 1992 in Minneapolis, Minnesota and gave an impassioned scold

ing directed at the general academic community for not providing adequate direc

tion and recommendations for soil sampling to direct the new equipment (Franzen, 

2014, personal experience). The required research was already being conducted in 

at least Illinois (Franzen and Peck, 1992), Wisconsin (Wollenhaupt et al., 1994), and 

Nebraska (Gotway et al., 1996) at this time; however, the data generated was very 

large in these experiments and computational power was not nearly as great or as 

rapid as what is available today. In analyzing data in Illinois, for example, generating 

just one map of a 12.5-ha test field with 256 sampling points took 2 h to calculate 

and print. The same process today takes about 10 s from start to finished printed 

page if the sampling results are already uploaded. The publication of results from 

the Illinois and Wisconsin experiments and the Nebraska experiments that followed 

therefore took longer than most fertilizer rate experiments conducted at the time. 

The results from the Illinois (Franzen and Peck, 1995), Wisconsin (Wollenhaupt 

et al., 1994), and Nebraska studies (Gotway et al., 1996) all indicated that to reveal 

soil P, K, and soil pH patterns adequately to direct a meaningful variable-rate fertil

izer or lime application, a 0.4-ha grid (one sample per acre) was necessary. 

Although most researchers that have sampled whole fields at small spatial scale 

(less than 0.4 ha sampling density) have found that 0.4 ha is a minimum density to 

sample if nutrient variability is in a range where variable-rate fertilizer application 

would make a positive difference to the farmer, most grid soil sampling today is 

conducted in a 1 sample ha−1 grid (2.5 acre grid). The reason that this is acceptable in 

the central Corn Belt of the United States today is that most fields and areas within 

those fields have soil P and K levels in the high range. Although there is considerable 

variability of P and K levels within the field, most of the field, regardless of soil test 

level, will result in the same P and K fertilizer recommendation. Therefore, a less 

dense grid is acceptable, because failure to represent the P and K nutrient level still 

results in the proper recommendation as provided by university soil fertility experts 

(Bullock, 2002; Wittry and Mallarino, 2004). 

With advances in grid sampling density, considerable energy was given to deter

mine the best manner to map grid-sampled data and how to generate improved soil 

sampling strategies. Using large soil sampling data bases, several researchers con

cluded that maps should be developed using kriging estimation rather than interpo

lation procedures such as inverse distance (Russo, 1984; Laslet et al., 1987; Laslet 

and McBratney, 1990; Laslet, 1994; Gotway et al., 1996; Kravchenko and Bullock, 

1999; Kravchenko, 2003). Several publications were offered to aid practitioners in 

understanding the principles and uses of geostatistical methods and sampling strate

gies that might help support improved variable-rate fertilization strategies (Mulla, 

1991; Wollenhaupt, 1996; Mulla and McBratney, 2002). Although kriging is the pre

ferred interpolation method with which to map soil nutrients, it is necessary to have 

a sample size of over 30 points, and it is also particularly helpful if a systematic 

unaligned grid was used. Both of these parameters result in sufficient variogram 

points to produce the relationship regression curve/line between variogram and dis

tance between points. Use of a regular grid, such as that used in Franzen (2007) 

produces limited points to construct the regression relationship, in the Illinois case, 



 

 

 

 

 

 

 

 

 

 

 

6 Precision Agriculture Technology for Crop Farming 

perhaps 30 distances. If a systematic unaligned grid was used, the number of dis

tance possibilities would exceed 100 for the same number of sampling points. 

Grid sampling strategies other than a regularly spaced grid design, and subse

quent within-field variable-rate fertilizer application would not be practical with

out reliable locating devices that could be linked with input rate. Before automatic 

locating systems, any within-field application relied on limiting it to smaller field 

boundary marked with posts or flags. Some elementary within-field lime or fertilizer 

application was possible using brightly marked flagging (Franzen, personal experi

ence, 1980s). The first automatic locating devices worked on radar. The U.S. Navy 

first utilized radio positioning devices in the 1920s. With satellite technology, the 

Navy deployed a radio-directed locating system called NAVSAT in 1964 (Danchik, 

1998). In agriculture, with the emergence of commercial variable-rate input applica

tion equipment, the availability of application equipment preceded the GPS network 

available from the U.S. Department of Defense. For a short time, radar positioning 

systems were used. These systems were cumbersome, with the radar posts needing 

deployment to define field boundaries before an applicator could begin work (Tillet, 

1991). 

The U.S. Department of Defense was granted congressional funding for a satellite 

positioning system that became known as GPS. The GPS idea was tested in phases, 

with 11 satellites launched up to 1985. Deployment of the remaining GPS satellites 

was delayed by the space shuttle Challenger explosion in 1986, which was the only 

launch platform for the satellites at the time. In 1989, satellite launches resumed with 

enhanced satellites compared with the first 11 previously launched, including greater 

longevity probability. The GPS satellite network of 24 satellites was completed in 

1994. In 1993, a joint Department of Defense and Department of Transportation 

agreement was signed that allowed civilian use of the GPS system. The availability 

of GPS for agriculture was a huge development for precision agriculture, and before 

long several companies offered GPS for agricultural use. The positioning of the orig

inal systems would not allow location within a few meters of an intended location, 

but real-time kinetic correction towers were built by agribusinesses and farmers so 

that better location could be provided (Allen et al., 2004). GPS signals directly from 

satellite signals have inherent errors associated with atmospheric layer differences. 

Corrections are made using corrective satellite differential receivers and transmit

ters, such as those used in the John Deere GreenStar™ system (Brimeyer, 2005), 

and through subscription to ground-based real-time kinematics differential towers 

often managed by third parties, such as the North Dakota/Minnesota Rural Tower 

Network (http://www.ruraltowernetwork.com/). 

The activity of grid sampling research stimulated thinking into alternative meth

ods of determining spatial nutrient patterns in soil and plants. One of the earlier 

alternative methods was to use soil survey as a delineation tool (Carr et al., 1991; 

Mausbach et al., 1993; Wibawa et al., 1993) with some success. Others documented 

that landscape, or landscape position had an influence on crop yield and crop nutri

ent availability (Malo et al., 1974; Malo and Worcester, 1975). Canadian researchers 

in particular documented the influence of topography on soil nutrients and yield 

early in the process (Spratt and McIver, 1972; Pennock et  al., 1987, 1992; Nolan 

et al., 1995; Penney et al., 1996). Others observed that terrain position was related to 

http://www.ruraltowernetwork.com
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differences in crop yield and quality (Fiez et al., 1994a,b; Kravchenko and Bullock, 

2000). A breakthrough in sampling design occurred when intensively sampled fields 

for nitrogen exhibited similar patterns of residual nitrate in successive years. A gen

eral understanding of soil nitrate was previously that it would change in value from 

year to year. Soil nitrate levels indeed change between years in values, but the rela

tive amounts are present in relatively stable areas or zones. Figure 1.3 shows a field 

sampled in 1994 and 1995 in a 33-m grid. The field was in spring wheat in 1994, 

fertilized with a uniform rate of N in spring 1995, and a substantial sunflower crop 

was harvested in 1995. The images from each year depict residual nitrate following 

the harvest of each crop. 

Since soil P and K levels vary little between years, it is difficult to attribute sta

bility of P and K patterns to some logical, underlying reason. However, for residual 

soil nitrate patterns to remain stable over years, there must be an underlying rea

son for this result. One of the five soil forming factors is topography (Jenny, 1941). 

Ruhe (1969) explained that water (and presumably any solutes it contains) moves 

through and within a landscape, but it always moves to the same places (Figure 1.4). 

The Valley City residual nitrate is strongly related to topography patterns in the 

field (Figure 1.5). From the mid-1990s, delineation of fields into nutrient manage

ment zones became a strategy that makes variable-rate nutrient application in many 

regions practical, including nitrogen in the northern Great Plains of the United States 

(Franzen et al., 1998; Fleming et al., 2000; Fridgen et al., 2000; Inman et al., 2005; 

Hornung et al., 2006). 

Determination of topography may be difficult. While elevation measurement is 

key to success, it is not just elevation measurement, but the development of topo

graphic shapes that are important to soil development and soil water movement, 

and therefore crop productivity. Elevation can be measured with a transit, as has 

been done for hundreds of years. However, with GPS, particularly differential GPS, 

the height measurement of the GPS location is provided along with latitude and 

longitude (Department of the Army, 1998). A remote sensing approach was pro

vided with the development of LiDAR (light detecting and ranging). LiDAR origi

nated shortly following the invention of the laser in the early 1960s. It combined the 
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FIGURE 1.3  Water movement through and over the landscape. (Adapted from Ruhe, R.V.  

1969.  Quaternary Landscapes in Iowa. Ames, IA: Iowa State University Press.) 
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FIGURE 1.4  Residual soil nitrate in a 12.5-ha field near Valley City, North Dakota, after 

spring wheat (left) and the following year after sunflower. 

narrow-focused properties of lasers with the distance calculating ability of radar 

(Carter et  al., 2012). Its use in determining small-scale elevation differences and 

mapping them has been useful in many aspects of site-specific management, includ

ing soil conservation (Galzki et al., 2011). 

In addition to topography, several other tools have been used to develop nutri

ent management zones. Satellite imagery has been used by numerous researchers to 
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FIGURE 1.5  (See color insert.) Residual soil nitrate from Valley City, North Dakota, over 

the landscape. 
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delineate nutrient management zones, particularly for nitrogen. Some of the early 

research on the use of satellite imagery for precision nitrogen management include 

Anderson and Yang (1996), Bausch et al. (1994, 1995), Faleide and Rosek (1996), 

Henry and Nielsen (1998), Johannsen et al. (1998), Schepers et al. (1996). The earli

est research on the use of satellite imagery for precision agriculture was hopeful of 

using it to direct in-season nitrogen availability status for crops. Elaborate proce

dures including sheets of plywood painted with specific colors from specific paint 

companies were erected in the corners of the research fields. However, problems 

with degree of light, light angle, and differences between crop cultivar colors made 

this objective unattainable. However, satellite imagery has been found to be useful 

in delineating nitrogen management zones for in-season nitrogen management using 

soil sampling and other methods (Franzen, 2004; Franzen et al., 2011). 

The sensors that exploit soil electrical transmittance properties are also used 

in delineating nutrient management zones. The two most common sensors are 

the EM-38 (Geonics Ltd., Missasauga, Ontario, Canada) and the Veris EC detec

tor (Veris Technologies, Salina, Kansas). Various models of the EM-38 have been 

available since 1980 (McNeil, 1980). The Veris electrical conductivity detector was 

commercialized in the late 1990s. Field zones can be delineated due to soil clay 

content (Doolittle et al., 1994; Kitchen et al., 1996; Banton, 1997). Electrical conduc

tivity has also been related directly to soil nitrate levels in otherwise uniform soils 

(Eigenberg, 2002). In addition, EC and magnetism can be used to detect differences 

in water-holding capacity or soil water content, cation exchange capacity, porosity, 

salinity, and temperature gradients (Grisso et al., 2009). If fields have relatively uni

form properties except for one measurable variable, as in the case of soil nitrate in 

some fields in Nebraska, or low salt coastal plain soils of the eastern United States, 

electrical conductivity can be used to directly relate to any of the variable factors that 

are singularly present in the field. However, in many fields, more than one factor var

ies independently of others. This is particularly the case in the northern Great Plains, 

where salinity may be present in soils with more or less clay content in different lev

els of landscape position due to internal water movement. In multivariable fields, the 

EC and magnetic flux sensors are pattern detectors with similar ability to delineate 

zones compared to other tools (Franzen, 2008a; Franzen et al., 2011). 

Other common soil delineation tools are multiyear yield maps (Basnet et al., 2003; 

Franzen, 2008b; Franzen et al., 2011), aerial imagery (Blackmer and Schepers, 1996; 

Franzen et al., 2011), and grower information (Khosla et al., 2002). Although it may 

be sometimes possible to delineate nutrient management zones using just one tool, 

greater stability of the constructed zones is made possible with the use of more than 

two zone delineation tools (Franzen et al., 2011). 

Soil sampling for nutrients may not be practical due to very small spatial vari

ability. This was found in Oklahoma (Raun et al., 1998). Residual nitrate variability 

before top-dress timing of Bermuda grass was in the range of <1 m. Soil sampling 

for variability at this small scale is unreasonable to expect. The result of this pre

liminary grid sampling study resulted in the development of an active-optical sensor 

to detect differences in nitrogen status for winter wheat, Bermuda grass, and other 

crops, which was linked to a variable-rate real-time on-the-go nitrogen fertilizer 

application. 
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Directly after the microvariability of nitrogen status of Bermuda grass was 

realized, Raun was approached by Marvin Stone and John Solie, two agricultural 

engineers at Oklahoma State University with an idea for a normalized differential 

vegetative index (NDVI) detector and light emitter and asked if he thought there 

might be an application. Thus, the team of Raun, Stone, and Solie was formed, with 

the objective to address small-scale variability of nitrogen in regional crops (W.R. 

Raun, 1995, personal communication). Sensor development and the link between 

sensor readings and winter wheat nitrogen began very soon (Stone et  al., 1996). 

This report included early sensor descriptions and the first correlation data of sensor 

readings with winter wheat yield. Estimating plant nitrogen status in Bermuda grass 

using sensors was reported in 1998 (Taylor et al., 1998). As work in Oklahoma pro

gressed, the relationship between sensor reading and wheat yield prediction became 

very evident. The construction of algorithms with the goal of in-season nitrogen 

application is based on sensor prediction of yields in a nitrogen nonlimiting strip 

compared to other areas within the field (Raun et al., 2001). The result of the work 

was the commercialization of the GreenSeeker™ active-optical sensor (Solie et al., 

2002). This applicator had the ability to operate at field sprayer speeds and apply 

N to each m2 of crop independently due to its array of sensors and nozzle clusters 

arranged every 1 m of spray boom width. 

The GreenSeeker sensor has since been tested and is used in many countries in 

wheat, corn, and other crops (http://www.nue.okstate.edu/). Most recently, a series 

of algorithms for North Dakota corn growers was published (Franzen et al., 2014). 

The procedure for use is to establish an N nonlimiting strip within field, within 

cultivar. At the time of top-dress/side-dress, the algorithm to be used is loaded into 

the rate-controller software, along with the growing degree days from the date of 

planting to the date of in-season application. When the field is entered with the in-

season nitrogen applicator, the first activity is to operate the sensor over the N-rich 

strip. The reading is divided by the growing degree days to provide a value called 

INSEY, which the Raun group coined as an acronym for in-season-estimate-of

yield. Algorithms are produced for a specific crop growth stage; however, expecting 

a grower to arrive at the field at exactly the specific algorithm growth stage is unrea

sonable due to workload challenges combined with weather restrictions. Dividing 

the readings by the growing degree days results in a normalized value that makes 

the algorithm useful for plus–minus one or two growth stages before and after the 

stage for which the algorithm was developed. As the applicator moves through the 

field, the yield prediction between the N nonlimiting standard and the other parts 

of the field are developed. The difference in yield is multiplied by the controller 

software times the presumed N content of the grain to be produced and divided by 

an efficiency factor from the grower reflective of field conditions and the method of 

application. The result is a rate of N applied to a small area of the field on-the-go as 

the applicator moves through the field. 

More recently, the Holland Scientific Crop Circle Sensor was introduced. Some 

of the basic principles of active-optical sensors developed by Oklahoma State were 

incorporated into the development of this sensor (Holland and Schepers, 2010); how

ever, the instrument relies on an internal field standard rather than a separate N-rich 

strip for application (Holland and Schepers, 2013). When the applicator with the 

http://www.nue.okstate.edu
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sensor enters the field, the greenest portion of the field is used as the standard. Using 

the sensor in this manner assumes that the greenest area of the field has as much 

nitrogen as required for the highest yield. 

Active-optical sensors have clear advantages over passive light/radiation sensors 

from satellites or airplanes because they only detect the radiation that they emit. The 

light emitted by these sensors operates on the same principle as a remote control for a 

television or an automatic garage-door opener. The light emitted is released in rapid 

pulses of varying lengths of time, separated by gaps in light emission of varying 

lengths of time. The light emission is very much similar to the UPC code in effect 

found on many grocery item packages in the United States. For that reason, active-

optical sensors can be used in any kind of light, at night or during the day whether 

clear or hazy or with intermittent cloud cover. The only conditions not conducive 

to gathering good data are rain or wet leaves, which would refract and disperse the 

light. 

A number of additional sensors have been developed since the precision agri

culture movement was initiated. One sensor was developed and marketed as the 

“Soil Doctor” during the early 1990s. Although the commercial operational proce

dure was not disclosed to the public, the device apparently grew out of an electri

cal conductivity apparatus developed from a Department of Energy grant (Colburn, 

1986). The unit was sold through the early 1990s, but it is apparently not marketed 

at present. Other sensors were developed during the late 1980s into the early 1990s, 

but most did not come to market. These included a real-time organic matter sensor 

developed at Purdue (Shonk et al., 1991), an organic matter sensor using near-infra

red spectroscopy (Sudduth and Hummel, 1993), and ion-selective electrodes (Birrell 

and Hummel, 1997). Successful commercialization of nutrient-related soil sensors 

includes the Veris Technologies soil pH sensor (Schirrmann et  al., 2011). In one 

study, the use of the Veris pH sensor related mapped sensor pH better with actual 

field pH patterns compared with standard site-specific soil sampling techniques,  

with errors in the liming rate recommendations reduced by half. Veris also markets 

the Optic Mapper™, which uses a within-soil near-infrared detector to estimate soil 

organic matter content (Lund, 2011). 

Analysis of grain protein during harvest was researched largely by Long first 

at Montana State in Havre, and then in Oregon (Engel et  al., 1998; Long et  al., 

1998; Long and Rosenthal, 2005). Although several combine protein monitors were 

tested over the years, the last one referred to in 2005, the Zeltex model marketed 

as AccuHarvest™, is commercialized for use in wheat, barley, corn, and soybean 

(http://www.zeltex.com/products/grain, 2014). 

Adoption of precision agriculture technologies by growers and their suppliers and 

practitioners has been slow for input control, but the adoption of machinery traffic 

control systems has been relatively rapid. The adoption of yield monitors by growers 

is provided in Table 1.1. 

Variable-rate technology has been adopted by many farm supplier retailers, but 

its adoption by grower is relatively low, with 12% of corn growers adopting by 2005, 

and about 14% of wheat growers. 

In contrast, adoption of tractor guidance systems by growers increased from about 

5% in 2001 to 35% in 2009 (Schimmelpfennig and Ebel, 2011). In a 2010 survey of 

http://www.zeltex.com


 

 

 

 

 

 

 

1996 1997 1998 1999 2000 2001 2002 2005 2006 

Percent of Planted Acres 

Corn 

Corn Belt 

Lake states 

Northern Plains 

21 

10 

15 

18 

19 

24 

28 

18 

19 

34 

29 

28 

28 

17 

27 

44 

39 

43 

Soybean 

Corn Belt 

Lake states 

Northern Plains 

13 

16 

15 

11 

9 

21 

16 

17 

23 

15 

21 

28

30

22

 24

 29

 17

 49 

48 

48 
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TABLE 1.1 
Yield Monitor Adoption for Corn and Soybeans by Region 1996–2006 

Source:	 Adapted from Schimmelpfennig, D. and R. Ebel. 2011. On the Doorstep of the Information 
Age. Recent Adoption of Precision Agriculture. Economic Information Bulletin No. 80, August, 

2011. USDA, Washington, DC, http://www.ers.usda.gov/media/81195/eib80_1_.pdf. 

corn growers, yield monitor use increased to over 72%, with about 34% of those 

using a yield monitor able to develop a map. Variable-rate fertilizer application was 

made by 19.3% of producers (USDA, 2010). 

1.3 SUMMARY OF CURRENT STATUS 

A 2013 survey of agricultural retailers in the United States (Erickson et al., 2013) 

found that some precision agriculture technologies increased while some remained 

at 2011 levels. Guidance with light bars with GPS of applicators was being used by 

82% of retailers, which is about the same as in 2011. GPS-enabled sprayer booms 

(differential shut-offs) increased from 39% to 53% adoption from 2011 to 2013. For 

diagnosis of crop nutrient status and presumably to help develop nutrient manage

ment zones, satellite imagery and aerial imagery increased from 31% in 2011 to 40% 

in 2013. Active-optical sensor use increased from 4% in 2011 to 7% in 2013. Soil 

EC sensors remained about 12%, while use of other soil sensors remained about 

3% from 2011 levels. Variable-rate single-nutrient fertilizer application is offered by 

more than 70% of retailers, while about 60% of retailers offer multinutrient variable-

rate application. About 29% of retailers offer variable-rate pesticide application in 

2013, but the survey indicates intentions to increase to 45% of retailers by 2016. 

Site-specific weed control research has received limited research compared with 

crop nutrients. The focus of the research has been in mapping weed infestations 

(Koller and Lanini, 2005) and weed imaging discrimination (Lin, 2009). Of the two 

approaches, the weed imaging strategy has been the most difficult to implement. 

Studies on weed identification by instruments date to the 1990s, but have achieved 

little commercial success (Singher, 1999; Tellaeche et al., 2011). 

http://www.ers.usda.gov
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Site-specific strategies for insects and disease are researched less than even weed 

control. However, one potentially useful tool to use is the ability of plants to emit 

unique volatile organic compounds when influenced by specific stressors (Spinelli 

et al., 2011; Niinemets et al., 2013). Specific compounds have been identified as a 

result of Fusarium infestation in winter wheat (Wenda-Piesik, 2011). With the proper 

nano-sensing or remote sensing instrument, one could imagine that in the future 

an array of sensors to a specific insect or weed in a field, and at an early infection, 

directed treatment could be provided. 
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2 Sensing Technology for 
Precision Crop Farming 

Marvin L. Stone and William R. Raun 

CONTENTS 

2.1 INTRODUCTION 

Precision agriculture (PA) or site-specific crop management is a concept based on 

sensing or observing and responding with management actions to spatial and tem

poral variability in crops. The “sensing” component of the concept is a fundamental 

element of PA. Conventional PA technology is commonly associated with geoloca

tion through global positioning system (GPS) or global navigation satellite system 

(GNSS) technology. A conventional PA application might employ yield monitoring  

where yield is sensed at GNSS-defined positions in a field. The sensed data are later 

used to manage the treatment of particular regions of the field based on the earlier 

yield at those locations. The process between sensing and management actions and 

the associated time delay can result in two fundamentally different PA techniques, 

real-time sense and apply (RTSA), and conventional georeferenced PA. 

RTSA is based on sensing a parameter and immediately using that information 

to effect a management action. Geolocation is not required for RTSA, as the site of  

the measurement can be the same as the site where the management action is per

formed. In contrast, conventional georeferenced PA technology employs sensing and 
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association of location with sensed data, a map of the sensed information. The man

agement action is not performed immediately but at a later time and the location data 

of the map is used to allow the management action to be performed at the appropri

ate site. Both RTSA and conventional georeferenced PA technology employ sensing 

technology, but the latter required GPS technology to emerge for the technique to be 

viable. The inclusion of RTSA technology under the definition of PA broadens the 

definition of PA. RTSA technology emerged earlier than conventional PA and is not 

necessarily distinguished by its association with GPS technology. 

The application of sensing to better manage crop production is a long-practiced 

technology. Crop irrigation is an example where irrigation is performed to mitigate 

crop water stress. The Egyptians and Mesopotamians irrigated agricultural crops 

before 2000 bc (Garbrecht, 1983). Sensing no doubt consists of observing wilt in 

the crops and irrigating the site to counter the observed crop water stress. Before the 

current widespread availability of electronics and sensing technology, nonelectronic 

technologies were developed for sensing soil water availability. Classical tensiome

ters, for example, required only mechanical technology to effect sensing and allowed 

irrigation to be performed at sites where water stress existed, perhaps an example of 

early PA. 

The emergence of modern electronics has made broad sensing technologies 

available for management of crop production. Electronics and sensor systems were 

exploited for application in agricultural equipment early after the availability of 

emerging electronics technologies. Logic integrated circuits were introduced in 

1964 by Texas Instruments, followed by monolithic amplifiers by Fairchild in 1965. 

These introductions were quickly followed by the introduction of a seed flow planter 

monitor by DICKEY-john in 1967 and a spray rate controller by ASCI in 1970 (Stone 

et al., 2008). Both of these controllers sensed operating parameters on an agricul

tural machine and in the first case allowed the operator to adjust the machine and in 

the second case automatically adjusted the machine. By the late 1980s, research was 

being conducted on conventional PA technologies. A yield measuring system was 

demonstrated with a local microwave positioning system by Searcy et al. in 1989. 

The first satellite in the Navstar GPS system was launched in 1989 and the sys

tem became fully operational in 1995 (Hegarty and Chatre, 2008). One of the first 

combine yield monitors to utilize GPS location data was introduced by Ag Leader 

in 1982. Soon after, other yield monitoring systems became available, including the 

John Deere Greenstar system in 1985 (Stone et al., 2008). The sensing component 

of these systems was a grain flow sensor coupled with a grain water content sensor. 

The emergence of yield sensing in a PA system focuses our attention to the mat

ter of the need to effect a management action based on yield measurements. That is, 

if yield can be effectively measured, what beneficial management action should be 

taken? This relationship between the sensed parameters and the management action 

will be referred to here as the “control algorithm.” The fundamental components of 

a PA system consist of sensor or sensors, the control algorithm, and management 

action. Figure 2.1 shows the relationship in a classical block diagram form and as a 

feedback system. In the case of yield monitoring, the “controlled variable” would be 

yield and the sensor system would provide the measured variable, measured yield. 

The measured variable would be compared to the “desired level of the measured 
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Control 
algorithm 

Management
action 

Sensor 
system 

Desired level of the 
measured variable Controlled variable 

– 

Measured variable 

External influences 

+ 

FIGURE 2.1  Block diagram of a precision farming control system. 

variable,” the yield, and the control algorithm would act upon this comparison to 

drive a management action. The action might be to increase or decrease fertilizer 

application rate. External influences, for example, the weather, affect the yield. The 

process for managing fertilizer application based on harvested yield may encompass 

many years of farming. In contrast, the timing in some RTSA systems, for example, 

using canopy reflectance to manage fertilizer application, may encompass only a few 

hundred microseconds between sensing and taking management action. 

The ultimate controlled variable in a precision farming system may be profit

ability. Profitability should at least be a major factor as we consider development of 

sensing technologies. It is worthwhile to look at a typical farm budget to allow identi

fication of promising sensing technologies. There is little sense in focusing significant 

efforts into developing technology if some reasonable return cannot be envisioned. 

The potential for significant increases in yield as well as significant decreases in 

production costs become the targets for potential sensor technology. Environmental 

issues, labor issues, and a myriad of other issues may affect profitability, and must 

play a role, but a simple examination of a typical farm budget provides some assis

tance in identifying important target areas for a focus on sensor technology. 

Table 2.1 presents example farm production costs for continuous farming of corn 

and for small grains in Iowa. For both of the cases shown, the fixed land and machin

ery costs rank in the top four categories. The primary variable costs identified are 

for nitrogen, phosphorus, and seed. The potential for both seed technologies in corn 

and nitrogen fertilizer management technologies are very good. In the case of nitro

gen fertilizer, nitrogen use efficiency (NUE) is 33% worldwide (Raun and Johnson, 

1999), indicating that two-thirds of the fertilizer that is applied is not recovered in 

harvests. The environmental impact of nitrogen use inefficiency is significant and 

well understood (Matson et al., 1997; Whitson and Walster, 1912). Major portions of 

that inefficiency can be addressed through precision nitrogen management (Cassman 

et al., 2002; Roberts, 2007) and crop reflectance-based sensor technology has been 

demonstrated to be effective in that role (Li et al., 2009). 

Iowa corn and small grains production costs cannot of course provide the broad 

perspective regarding the potential for sensor technology, but do provide a technique 

for identification of the potential with those crops. A very different perspective exists 

with irrigated crop production where water use is a major factor and with other crops 
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TABLE 2.1 
Crop Production Costs Estimated with the Iowa State University “Ag 
Decision Maker” Based on Continuous Conventional Tillage for Year 2012 

Continuous Corn (US $) Continuous Oats (US $) 

Land (rent) 129,000 32% Land (rent) 50,000 31% 

Nitrogen (N) 56,700 14% Machinery 22,650 14% 

Seed 51,000 13% Nitrogen (N) 20,400 13% 

Machinery 43,650 11% Phosphate (P) 20,250 13% 

Drying, handling 30,030 7% Labor 16,500 10% 

Phosphate (P) 19,840 5% Lime 14,500 9% 

Labor 16,673 4% Seed 10,000 6% 

Potash (K) 13,750 3% Potash (K) 7,200 4% 

Insurance 11,250 3% Herbicide 0 0% 

Herbicide 10,000 2% Insecticide 0 0% 

Insecticide 9,200 2% Insurance 0 0% 

Interest 7,331 2% Miscellaneous 0 0% 

Lime 4,835 1% Interest 0 0% 

Miscellaneous 4,500 1% Drying, handling 0 0% 

Total 407,759 100% Total 161,500 100% 

where other potential applications exist. The sensor technologies reviewed below are 

not comprehensive, but address those technologies that appear to have good potential. 

2.2 CONTROL  ALGORITHMS 

2.2.1 SENSOR-BASED ALGORITHMS  FOR FERTILIZER NITROGEN 

It is important to begin this section with work coming from the late Norman E.  

Borlaug. Borlaug (2000) stated that agricultural scientists have an obligation to 

inform others concerning the magnitude and seriousness of arable land, food, and 

population problems that lie ahead, even with breakthroughs in biotechnology. One 

of these problems has been the seriousness of how fertilizer nitrogen is used and the 

aftermath/consequences of its potential misuse for cereal grain production in the 

world. Algorithms that can objectively apply the right source, at the right rate, at 

the right time, and in the right place (IPNI, 2012) will be those that impact our world 

both today and well into the future. 

In this light, this review hopes to highlight algorithms and methodologies that 

will make a difference in how nitrogen is managed. What exactly comprises these 

algorithms and how each of the components is used is delineated in the following 

discussion. 

2.2.2 ALGORITHM COMPONENTS 

Yield goal: Grain yield goals have been used for many years to estimate preplant 

fertilizer N rates. Early work by Dahnke et al. (1988) noted that the yield goal was 
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the “yield per acre you hope to grow.” They further noted that what you hope to grow 

and what you end up with are two different things. Early work by Allison (1955) 

noted that accurate values for N removed in harvested crops were commonly avail

able. However, leaching of N as NO3–N and volatilization losses remained problem

atic in N balance studies. As a result, he noted that N balance sheets seldom added 

up (outputs minus inputs) and that helped to explain why recoveries of nitrogen in the 

crop were often only 50% of that added as fertilizer. 

The yield goal concept at North Dakota State University recommends using the 

highest yield attained in the last 4–5 years and is usually 30%–33% higher than the 

average yield. Rehm and Schmitt (1989) noted that with favorable soil moisture at 

planting, it would be smart to aim for a 10%–20% increase over the recent average 

when selecting a grain yield goal. They also indicated that if soil moisture is limit

ing, the use of history and past maximums (used to generate the average) may not be 

the best method for setting a grain yield goal for the upcoming crop. In Nebraska, 

fertilizer N rate recommendations for corn and that use yield goals are 1.2 pounds 

N/bushel (0.02 kg N/kg grain), and that can include soil test and soil organic matter 

credits (Shapiro et al., 2008). For winter wheat, the yield goal-based N rate recom

mendation is 2 pounds of N for every bushel (0.03 kg N/kg grain) you hope to pro

duce (Zhang et al., 2010). 

The use of farm or county averages was not suggested for progressive farmers 

concerned with high farm profitability (Rehm and Schmitt, 1989). Black and Bauer 

(1988) reported that the grain yield goal should be based on how much water is avail

able to the winter wheat crop from stored soil water to a depth of 1.5 m in the spring 

plus the anticipated amount of growing-season precipitation. 

More recent sensor technologies, weather forecasting, and crop modeling have 

enabled the development of methods for predicting potential grain yields, and have 

allowed for in-season nutrient adjustments to reflect early crop development and 

growing conditions. Nonetheless, “yield goals” as we understand them are an incred

ibly useful term/concept because they embed intrinsic knowledge about the environ

ment, climate, terrain, and a holistic understanding of the crop management system 

that is being practiced. Furthermore, these yield goals are understood to be unique 

for each and every producer, as he or she will know within certain boundaries, what 

their yield goal should be for any given year. This is predicated on years of experi

ence, on that farm, and encompass the environmental conditions encountered over 

time. 

Their “yield goal” embeds added information and experiences that include sea

sonally late or early planting, variety and/or hybrid, weed pressure, and even sensi

tivity to whether or not the ground is being rented, or that it was owned. All of this 

impacts the “yield goal” that a producer might establish at the very beginning of 

the season, with no knowledge whatsoever of what the environment/climate might 

deliver. As such, the yield goal can take on transitory properties that may or may not 

be the same, for the same producer, next year. It is also likely that for the exact same 

set of conditions, land being farmed, and crop being grown, two different producers 

would have completely different yield goals. This variability does not diminish the 

value and/or importance of yield goals, but rather highlights its intrinsic anthropo

logical nature. 
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Yield potential (YP0): Because “yield goal” can take on so many different forms, 

some clearly numeric and linear, and others that are more composite and literal, it 

remains in fact, a highly desirable term. Sequential to this is thinking that research

ers could indeed generate the parameters and inputs to predict yield goal. Is it even 

possible? If yield goals could indeed be predicted, they would make complete sense 

since known nutrient removal amounts are understood at a given level of yield (IPNI, 

2014). Replenishing those nutrients at X-yield level using an expected efficiency for 

each nutrient in question would indeed be diligent and acceptable to any producer. 

Or, would it rather be possible to predict one of the important fragments of “yield 

goal” that is again understood as a more holistic all-encompassing quantity? An 

all-important fragment of “yield goal” is “yield potential” or the upper level yield 

boundary that is dictated by a host of factors. Nonetheless, can the menagerie of 

information and data available to a producer prior to planting be used to predict yield 

potential? At this juncture, the answer is likely no, again, for a preplant decision. 

Raun et  al. (2001) has focused on the task of predicting what that upper yield 

boundary might be midseason (rather than preplant), not what the actual yield would 

be, but what it could be. And this is based on midseason “progress” or the midseason 

“report card.” Their work further showed that a normalized difference vegetative 

index (NDVI)-based formula accounted for 83% of the variability in actual grain 

yield, and ended up being the cornerstone of their entire YP0-RI concept paper (Raun 

et al., 2002). In this work, they went on to define the prediction of yield potential as 

INSEY or in-season estimated yield, and that continues to be used in the literature 

today. Their prediction of yield potential or INSEY was robust in that it accounted 

for the number of days from planting to sensing where growth was possible. This for 

winter wheat would be days where GDD >0 (GDD = [Tmin + Tmax]/2–4.4°C), where 

Tmin and Tmax represent daily ambient low and high temperatures. This index in turn 

represented growth rate, since total biomass can be estimated using NDVI, and when 

divided by the number of days where growth was possible was equivalent to biomass 

produced per day. This midseason estimate of growth rate was then found to highly 

correlate with actual yield. INSEY or yield potential could thus be estimated at any 

location where the planting date was known, and an accurate field value of NDVI 

was collected. And this was provided that sufficient data had been collected to gener

ate the INSEY-measured grain yield equation (Lukina et al., 2001; Raun et al., 2001) 

and that is likely to be environment-specific as present research has shown (http:// 

www.nue.okstate.edu/Yield_Potential.htm). 

Basing fertilizer N rates on the amounts removed in forages and/or from cereal 

grains has also been an important practice. Work by Lukina et al. (2001) noted that 

INSEY could be used to compute the potential N that was removed from the grain. 

In-season N fertilization needs were then considered to be equal to the amount of 

predicted grain N uptake (potential yield times grain N) minus predicted early-sea

son plant N uptake (at the time of sensing), divided by an efficiency factor. The use 

of INSEY could replace N fertilization rates determined using production history 

(yield goals), provided that the production system allows for in-season application 

of fertilizer N. 

Response index (RI) or N responsiveness: Some of the earlier sensor work with 

algorithms was conducted by Mullen et al. (2003) who predicted N responsiveness or 

http://www.nue.okstate.edu
http://www.nue.okstate.edu
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the likelihood of obtaining a response to applied fertilizer using NDVI data collected 

from an N-rich strip (area where preplant N had been applied at a rate where no N 

deficiency would be encountered during the growing season) and the farmer prac

tice. Dividing the NDVI from the N-rich strip by the NDVI value from the farmer 

practice was termed the response index or RINDVI. The response index determined 

from these same two plots, but using grain yield at harvest, or RIHarvest (yield of the 

N-rich strip/yield of the farmer practice) was found to be highly correlated with 

RINDVI. Or in other words, the midseason RINDVI could be used to project what kind 

of final RI would be found at the end of the season, or RIHarvest. Being able to predict 

this environmentally dependent statistic empowered those developing sensor-based 

applications for nutrient management. 

What was interesting from this work was the value of the N-rich strip by itself. 

Independent of any methodology for predicting midseason yield potential, knowl

edge of what the N-rich strip or RI was could dictate whether or not a producer 

applied N fertilizer. This was simply a yes or no question and that was in no way 

bound to a specific rate. If producers could not see the N-rich strip in the middle 

of the season, it was then highly likely that they would not see a response to added 

fertilizer N and the decision to not apply any more N was embraced. Alternatively, 

if visible differences in biomass and intensity of green color were clearly different, 

the demand for added N was evident. Equally important concerning work with the 

N-rich strip was that the responsiveness or RI changed radically from year to year 

and at the same location (Arnall et al., 2013). This was noted for both corn and wheat 

throughout the Great Plains region (Raun et al., 2011). 

Combined use of yield potential (YP0) and RI or (YP0-RI): Algorithms and N fer

tilization methods have been present in the sensing world for some time. Raun et al. 

(2004) noted that basing midseason N fertilizer N rates on predicted yield potential 

and a response index could increase NUE by over 15% in winter wheat when com

pared to conventional methods. Their work further noted that using a sensor-based 

algorithm employing both yield potential and N responsiveness could increase yields 

and decrease environmental contamination due to excessive N fertilization. 

Fundamental to this work were pointed findings in the entire Great Plains 

region documenting that yield potential (yield level) and nitrogen responsiveness 

were independent of one another (Raun et  al., 2011; Arnall et  al., 2013). Their 

independence and knowledge that both impact crop demand for N necessitates the 

inclusion of both in any reasonable algorithm expected to determine accurate mid-

season fertilizer N rate recommendations. This was facilitated by early NDVI sen

sor work that made midseason fertilizer N rate recommendations possible (Stone 

et al., 1996). 

A variant of the YP0-RI approach has two added findings that clearly apply to 

sensor-based N rate algorithms. The first is the knowledge that not only did the 

YP0-RI approach work to improve fertilizer NUE over conventional methods, but 

that the spatial scale at which sensor-based systems should operate is 0.4 m2 (Raun 

et al., 2005b). Furthermore, and that is tied specifically to the GreenSeeker™ NDVI 

sensor, is determining the spatial variability within each 0.4 m2 area using the coef

ficient of variation (CV) from NDVI readings. When CVs were higher (within each 

0.4 m2), N rates were lowered due to the expressed variability within that area. When 
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CVs were lower, N rates were increased due to the improved homogeneity of the 

plant stand and that reflected a higher yield potential. 

Sufficiency: Roger Bray’s original nutrient mobility concept helped to clarify why 

sufficiency could only be used for immobile nutrients (Bray, 1954). In this work, he 

delineated the root system sorption zone for mobile nutrients and the root surface 

sorption zone for immobile nutrients. 

In soils, plants respond to the total amount present for mobile nutrients and to 

the actual concentration for immobile nutrients. Or, yield is directly related (pro

portional) to the total amount of a mobile nutrient present in the soil. As such, nutri

ent depletion of the root system sorption zone is dependent on the environment, or 

growing conditions. Response of crops to mobile nutrients is considered to be linear 

(mobile nutrient availability is unaffected by reaction with the soil). However, yield 

response to an immobile nutrient is not related to the total amount present in the soil, 

but instead is a function of the concentration at, or near, the root surface. Because of 

this, nutrient depletion in the root surface sorption zone is considered to be indepen

dent of the environment. 

Varvel et  al. (1997) used chlorophyll meter readings to calculate a sufficiency 

index ([as-needed treatment/well-fertilized treatment] × 100). This was then used to 

make in-season N fertilizer applications when index values were below 95%. The 

rate used was 30 lb N/ac, checked every 7 days and N was applied (if needed) all the 

way to the R3 corn growth stage. 

Why is this so important? If sufficiency is dependent on the environment and in-

season growing conditions, midseason fertilizer rates should be tied to yield level. 

This is precisely why this issue has been raised because those using the sufficiency 

approach have not included yield level or an expected yield potential to refine the 

final recommended rate. 

Maximum return to nitrogen (MRTN): MRTN provides N rate recommendations 

based directly from analysis of N response trials and return to N (corn nitrogen rate 

calculator; http://extension.agron.iastate.edu/soilfertility/nrate.aspx). This approach 

does not employ the use of sensors, and remains relatively popular. Fertilizer N rates 

are determined from yield increases to applied N and current grain and fertilizer 

prices; but not to yield level (Sawyer et  al., 2006). Further clarification by Larry 

Bundy noted that their results provided no clear indication of a change in N rates over 

time. Reasons for similar optimum N rates where yields have increased substantially 

include more efficient utilization of available N by the crop and increased soil N 

supplying capability. 

Their summary indicates that the flat net return surrounding the N rate at MRTN 

reflects small yield changes near optimum N thus indicating that choosing an exact N 

rate is not critical to maximize profit. In light of the known environmental problems 

coming from excess N in agriculture, particularly corn, this laissez faire approach is 

highly disconcerting. 

2.2.3 ALGORITHM APPLICATIONS  AND CONCEPTS 

Work by Roberts et al. (2009) noted that because sensor information can be processed 

into an N rate that approximates optimum N, sensor-based N applications can also 

http://www.extension.agron.iastate.edu


 

 

 

 

 

 

 

 

 

 

Type Typical Crop Application 

Momentum difference Grain 

Mass flow detection Grain 

Load cell based Grain

 Radiation based Grain 

Optical density Cotton, sugarcane, peanuts 

Volumetric metering Grain 

Batch weighing systems Potatoes, specialty crops 
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have environmentally beneficial effects. Added studies in Missouri (Scharf et  al., 

2011) showed that sensor-based N management reduced N applied by 25% beyond 

what was removed in the grain, thus reducing unused N that can move to water or 

air. They further noted that a midseason sensor-based approach could choose N rates 

for corn that perform better than rates chosen by producers. Comprehensive field 

work by Kitchen et al. (2010) showed that crop-canopy reflectance sensing delivered 

improved N management over conventional single-rate applications. More recent 

studies by Torino et al. (2014) showed that early season estimates of crop N status 

and yield potential may be more accurate if red-edge vegetation indices were used. 

What is apparent in the literature is that sensor-based N management has taken 

hold in the developed world. It is a technology that embeds sound agronomic prin

ciples within engineering applications that can be delivered at whatever scale pro

ducers seek. 

2.3 YIELD  MONITORING 

Yield monitoring is an important source of information in PA systems. Comparative 

yield information may be used to assess the performance of farming practices. 

Absolute yield levels may also be used directly in control algorithms. The obvious 

example is in managing fertilization where removal of nutrients through harvesting 

can be determined as a fraction of yield and an algorithm may be used to compute 

the necessary nutrient replacement. In both cases, site-specific yield information 

may be required at a spatial resolution and accuracy suitable for the application. 

Georeferenced yield monitoring emerged as a commercial product in the early 

1990s and was the first conventional PA technology to become widely used. 

Fundamental types of yield monitor sensing systems have evolved and are reviewed 

by Demmel (2013). Table 2.2 presents a classification of yield sensing systems and 

identifies typical crop applications where the technology has been used. 

Yield is normally expressed as a volume per unit area and might be better referred 

to as area-specific yield. Expressed this way, yield comparisons may be made without 

regard to area and total harvest mass or volume (total yield) can be readily computed 

from average yield and area. The expression of yield as an area-specific quantity 

requires monitoring area harvested as an input to provide yield data. Harvested area 

TABLE 2.2 
Yield Sensor Types 
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TABLE 2.3 
Variables in Yield Monitoring Equations 

Variable Definition Unit (L—Length, M—Mass, T—Time) 

Q Volumetric rate L3/T 

A Cross-sectional area L2 

V Average velocity of the material L/T 

vt Travel velocity of the machine 

mm Mass flow rate M/T 

M Mass measurement M 

ρ Density M/L3 

ρb Crop bulk density M/L3 

V Volume of the control volume L3 

L Control volume length L 

F Reaction force ML/T2 

Y Yield L3/L2 

W Effective harvesting width L 

is usually computed as effective harvesting width w multiplied by the length of travel 

over which the measurement of harvested mass or volume is made. Yield may be 

expressed as the volumetric flow rate divided by the product of travel velocity and 

effective harvesting width as shown in Equation 2.1 (the variables are defined further 

in Table 2.3). Error in yield monitoring systems arises from not only the crop flow 

measuring system but also from the speed and effective width inputs. 

Q
Y = (2.1)

v w
 t  

The first principle equations governing flow measuring techniques are reviewed 

below. The purpose of examining the governing equations is to gain a better under

standing of the operating principles and identification of some of the potential inter

ferences affecting these sensors. 

2.3.1 MASS FLOW-BASED YIELD MEASURING SYSTEMS 

Figure 2.2 depicts a continuous weighing system. This type of flow measuring device 

may be modeled as a control volume of fixed length, l, and a mass detection means 

denoted in the figure by m. The harvested crop flows through the control volume at 

an average velocity, v. 

Flow through the system may be calculated as cross-sectional area multiplied by 

average material velocity as shown in Equation 2.2. This equation may be expressed 

in terms of mass flow rate by multiplying Equation 2.2 by density, ρ, as show in 

Equation 2.3. 

Q  = Av (2.2)  
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A 
l 

m 

v 

FIGURE 2.2  Weighing conveyor (mass flow detecting) sensor. 

mm = ρQ = ρAv  (2.3)   

The density of the crop flowing through the sensor can be expressed as mass 

divided by the control volume or cross-sectional area multiplied by the length as 

shown in Equation 2.4. Substituting this density into Equation 2.3 as shown in 

Equation 2.5 provides a mass flow equation: 

m mρ =  = (2.4) 
 V Al  

m mv 
mm = ρAv  = Av = (2.5) 

 Al l  

The mass flow Equation 2.5 no longer includes density of the crop in the control 

volume and issues of partial fill in the control volume are eliminated. Equation 2.5 

may be converted to a volumetric flow equation as shown in Equation 2.6 by dividing 

both sides of the equation by bulk density of the harvested crop. Equation 2.1 may 

then be used to compute yield from the mass measurement by substituting Q from 

Equation 2.6 into Equation 2.1. 

mm mv  
Q = = (2.6) ρ bl 

 b ρ
 

(mv/ρbl) mv
Y = = (2.7) 

v w  ρ lv w 
 t b t  

Equation 2.7 demonstrates that the variables that contribute to yield sensing with 

this type of flow meter include mass detection, m, as well as crop bulk density, travel 

velocity, and effective harvesting width. The control volume length and material 

velocity would normally be fixed and probably included in a calibration coefficient. 

Figure 2.3 depicts a momentum difference-based mass flow meter. The momen

tum equation from fluid mechanics can be applied in this concept to determine the 

effect of the momentum change of the material flowing through the sensor. Equation 
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Fy 

Fx 
v1x 

v2y 

FIGURE 2.3  Deflection plate-based (momentum difference) sensor. 

2.8 presents the classical fluid mechanics equation for conservation of momentum 

in one direction (x). Based on that equation, we can write the equations for reaction 

forces in Fx and Fy due to the change in momentum of the material flowing through 

the sensor, Equations 2.9 and 2.10. The volumetric flow rate based on Fy can be 

found by rearranging Equation 2.10 as shown in Equation 2.11 and an equation for 

yield found by substituting Equation 2.11 into 2.1 giving Equation 2.12. Equation 

2.12 demonstrates that momentum-based flow meters are susceptible to errors in 

bulk density, travel speed, and effective harvesting width and require that the mate

rial velocity through the meter remain constant or be accounted for 

F 
 

∑ x = ρQ( v  x2 − v x1 ) (2.8) 
 

Fx = −ρQ v  1 (2.9) 
  

F = ρ
 y Qv  2 (2.10) 

 

F
Q = y

(2.11) 
ρv

 2  

F 
Y = y 

(2.12) 
ρ wv v 

 b 2 t  

Equation 2.12 does not account for friction of the material flowing through the 

meter on the force measurements. That effect is important and can be visualized 

with a geometry where there is no curvature through the meter. In this case, the 

incoming and outgoing velocity would be the same. In this case too, the friction of 

the material would tend to force the deflector toward the discharge. This frictional 

effect is managed by minimization where a deflector friction coefficient with the 

flowing material is kept low and through calibration. 
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Crop flow meters that utilize force or mass measurement are susceptible to errors 

due to motion of the harvesting machine. Gravity forces act on the devices and 

though they may be removed by calibration for a machine on the level, tilting of the 

machine produces errors. In addition, accelerations of the machine also act on the 

meters. Taylor et al. (2011) investigated these effects in grain flow yield monitors 

with corn in field tests and found typical errors of −1.1 ± 3.6% (where the random 

error is expressed as ±2 standard deviations here), which were confirmed in bench 

testing by Demmel (2013) with errors of  −1.9 ± 3.4%. Yield monitors with these 

errors have been successful in the market. Micromachined silicon accelerometers 

and gyroscopes are now available that would allow measurements of accelerations 

and removal of gravitational and motion effects. 

Force-based crop flow meters have also been applied in sugarcane and root crops. 

Root crop systems have been reviewed by Demmel (2013) and research regarding 

sugarcane systems has been reviewed by Price et al. (2011). These root crop systems 

were found to have errors similar to those for grain. The sugarbeet systems had 

significantly higher error and Price et  al. (2011) developed an alternative optical 

system. 

2.3.2 OPTICAL  AND RADIATION-BASED YIELD MEASURING SYSTEMS 

Optical and radiation-based crop flow meters have been reported and eliminate 

the inertial and body force effects of the force measuring devices. Optical-based 

systems typically utilize an optical density measurement where light transmis

sion through the flowing crop is related to the crop mass (Thomasson et al., 1999; 

Wilkerson et  al., 2001). These systems have been applied in cotton and are the 

basis of commercial cotton yield monitors (Vellidis et al., 2003). Optically based 

flow meters have been applied in sugarcane where optical fiber was used to effect 

a volume measurement of conveyor sections (Price et al., 2011). Thomasson (2006) 

described an optical method used in peanut yield monitoring and this technol

ogy is now available from several commercial manufacturers. Porter et al. (2013) 

described field testing of Ag leader cotton yield monitors applied in peanuts with 

under 10% error. Persson et al. (2004) demonstrated an optical yield measurement 

with potatoes and the sensor worked well and is a potential option for tuber yield 

monitoring with errors in the 1% range. 

Radiation-based mass detection using a radioactive sealed source has been 

employed in commercial grain yield monitors in Europe. These devices delivered 

accuracy comparable to force-based designs (Demmel, 2013) but face heavy regula

tory limitations in some countries and decommissioning the devices is expensive 

and regulated (Government of the UK, 2008). X-ray systems have been considered 

for forage applications (Kormann, 2004; Wild et al., 2014) with promising results. 

Most combine yield monitors also incorporate grain moisture measurement. This 

measurement can contribute to applications in precision farming. With regard to 

nutrient replacement control algorithms, the nutrient contents in the grain are calcu

lated on a dry weight basis and correction for moisture content of yields should be 

done. 
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2.3.3 YIELD MAPS 

Data from combine yield maps are normally recorded with geographical coordinates 

associated with each measurement. The data are typically placed into commercial 

farm GIS packages where the data are placed into map form. Interpolation is used to 

allow a spatially continuous representation of yield to be made. Noack et al. (2006) 

discuss the issues regarding the effect of interpolation methods on the representation 

of the data. 

2.4 CROP CANOPY REFLECTANCE SENSING 

2.4.1 SPECTRAL INDICES  AND THEIR RELATIONSHIP  TO CROP MANAGEMENT 

The green color of plants is largely due the scarcity of red light from their reflected 

energy. The strong absorption of red light by chlorophyll is associated with this effect 

and provides a convenient remote sensing method for the assessment of chlorophyll 

in plant canopies. Canopy reflectance sensing technology is based on measurements 

of reflected energy in different portions of the spectrum and is generally reliant on 

ratios of one portion of the spectra to another. This ratio technique allows spectral 

differences to be assessed and yet the ratio is largely invariant to the variation of total 

spectral energy. 

Rouse et  al. (1974) identified several “vegetative indices” and developed the 

NDVI. NDVI was used to relate green biomass development during spring “green

up.” NDVI is a spectral index relating the difference between reflected energy in the 

near-infrared (NIR) portion of the spectrum and reflected energy in the red portion 

of the spectrum. The difference was normalized into a ratio by dividing this differ

ence by the sum of both the NIR and red portions of the spectral energy, as shown 

in Equation 2.13. 

ρNIR − ρ
NDVI = red (2.13) ρ

 NIR + ρred  

NDVI is effective in distinguishing chlorophyll-containing plants against a soil 

background as seen in Figure 2.4. Spectra for wheat at Feekes 5 (a short grass stage) 

is compared to bare soil spectra. The NIR and red regions of the spectra are marked 

by the arrows. The NIR reflectance of the wheat is much greater than the NIR reflec

tance of the soil while the red reflectance of the wheat plant is much less than the 

red reflectance of the soil. The resulting NDVI for the wheat is much greater than 

that for the soil. 

The potential interference due to variations in soil background is a potential issue. 

Figure 2.5 shows the spectral reflectance of soils taken from across Oklahoma. Soils 

in this region vary widely in color and texture. NDVI for each of the soils shown are 

tabulated on the right side of the figure. The resulting variation in NDVI is small 

enough so as not to be a significant factor in the measurement of crop NDVI against 

a soil background. 
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FIGURE 2.4 (See color insert.) Typical combine-derived yield map. 

FIGURE 2.5 Spectral reflectance of wheat and soil. 
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Many indices have been examined for potential use in PA. Care must be taken 

regarding the proposed use of the index and the purpose for which the index is being 

selected. Tucker et al. (1979) demonstrated that contrasts between the red chloro

phyll absorbing bands and the internal leaf-scattering NIR bands could be related to 

crop biomass. Peñuelas et al. (1994) compared narrow-band indices and NDVI taken 

on single leaves and found the first derivative of the green reflectance at 525 nm 

(Dg) a better indicator of chlorophyll concentration in sunflower leaves than NDVI. 

Narrow-band indices like Dg were found to track diurnal photosynthetic light use 

efficiency where NDVI did not. This result would first appear to be a disadvantage 

for application of the more spectrally spread indices like NDVI, but lack of diurnal 

variation and ability of NDVI to correlate to biomass favors the use of wider band 

indices if biomass detection is required. 

The connection between chlorophyll content and nitrogen uptake by the vegeta

tive portions of plants is fundamental to the use of canopy reflectance indices for 

nitrogen fertilization management. Gamon et  al. (1995) demonstrated that NDVI 

is well correlated to vegetative biomass as well as area-specific chlorophyll content 

(g/m2). Their results indicated that the correlations were independent of plant type. 

Photosynthetic proteins represent a large proportion to total leaf nitrogen content 

(Evans, 1983). Thomas and Oerther (1972) demonstrated that nitrogen content in 

plant vegetative biomass could be estimated with 550 nm reflectance measurements. 

Serrano et al. (2000) also demonstrated that biomass was highly correlated with the 

simple ratio (SR), a ratio of NIR to red reflectance. Serrano et al. was also able to cor

relate yield to SR. High correlation of NDVI to specific chlorophyll content (g/m2) 

while at the same time low correlation of NDVI to chlorophyll concentration was 

demonstrated by Jones et al. (2007) and confirmed by Eitel et al. (2008). Vegetative 

indices are likely to be different depending on whether correlation of the index to 

chlorophyll concentration or chlorophyll content is sought. Chlorophyll content is 

mainly determined by nitrogen availability (Moorby and Besford, 1983), a necessary 

result to recommend the use of reflectance indices in determining nitrogen avail

ability. Figure 2.6 shows the spectral relationship between nitrogen availability and 

changes in the reflectance spectra of winter wheat. Note particularly the lowering of 

the spectra with higher nitrogen availability in the red region of the spectra and the 

rise in the spectra with higher nitrogen availability in the NIR region. 

Selection of an optimum reflectance index for a particular purpose is appropri

ate. Reusch (2005) searched the 400–1000 nm spectra of in situ winter wheat for all 

possible two-channel ratio vegetative indices for correlation to nitrogen uptake. They 

found that ratios with one NIR channel and one channel in the 730–750 nm band 

produced the best correlations. Strong correlations were found by Mistele (2006) 

between nitrogen uptake in winter wheat and the index, the red-edge inflection point 

(REIP) given in Equation 2.14 below. 

[(ρ + ρ ]/2) − ρ
REIP = 700 + 40 670 680 700 (2.14) ρ − ρ

 740 700  

REIP was developed by Guyot et al. (1988) and has been associated with better 

sensitivity to biomass where canopy coverage is high. Horler et al. (1983) attributed 
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FIGURE 2.6  Spectral variation in Oklahoma soils (bare soils taken from the surface). Left: 

Spectral reflectance. Right: Associated NDVI. 

the shift of the inflection point toward the NIR for higher chlorophyll concentrations 

to higher internal scattering within the leaf tissue. Figure 2.7 illustrates the shift 

where the horizontal grey arrow is placed near the inflection points. The inflection 

moved to the right (toward the NIR) with the higher nitrogen availability. 

Normalized difference red edge index (NDRE) has been successfully used to 

describe nitrogen stress in wheat by Rodriguez et al. (2006). Barnes et al. (2000) 

developed the NDRE to detect crop nitrogen and water stress as shown in Equation 

2.15. The spectral ranges are shown in the subscripts for reflectance data with this 

index. Barnes et al. (2000) used NDRE with NDVI to compute a canopy chlorophyll 

content index (CCCI), which they found well correlated with nitrogen uptake. 

ρ760 −850 − ρ
NDRE = 690−730 (2.15) ρ + ρ

 760−850 690−730  

2.4.2 APPLICATION  OF CANOPY REFLECTANCE INDICES 

Canopy reflectance technology has been developed for use in nitrogen management 

for most major field crops. Nitrogen uptake, the nitrogen content of the vegetative 

biomass, has been used in control algorithms as an input parameter in the algorithms 

for top-dressing fertilization (fertilizer applied after the crop has emerged) (Raun 

et al., 2002; Liang et al., 2005). In winter wheat, for example, nitrogen uptake by the 

plant provides a measure of nitrogen availability. The availability of nitrogen in the 

soil is heavily dependent on the climatic conditions and canopy reflectance is used to 

assess the need for additional nitrogen fertilizer (Johnson and Raun, 2003). 
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FIGURE 2.7  Spectral reflectance response to higher levels of nitrogen fertilization in wheat. 

Raun et al. (2002) proposed an algorithm for use in wheat that uses canopy reflec

tance to predict yield potential as well as assessing soil nitrogen availability. Figure 

2.8 illustrates their yield potential prediction method. Yield potential is the maxi

mum yield that would be expected for a particular soil condition with ideal weather 

conditions. The actual yield as seen in the figure is distributed along the yield axis 

and is normally reduced from the yield potential due to weather, insects, disease, and 

other stressors. The yield potential is represented by some maximum envelope and a 

standard deviation above the average was used by Raun et al. (2002) to estimate yield 

potential. The reflectance index used in their method, INSEY, was NDVI modi

fied by a measure of growing days since planting. NUE averaged over all of their 

sites was improved by 15% over conventional nitrogen fertilization practice. Ortez-

Monasterio et al. (2014) reported improved profitability through nitrogen savings of 

greater than $60 per ha over 432 field trials covering more than 6000 ha in farmers’ 

fields in Mexico using a similar system. 

Mistele and Schmidhalter (2010) validated the use of REIP for application in 

biomass and nitrogen uptake measurement in wheat with a tractor mounted system 

in a 3-year field study. They concluded that the system could be used for nitrogen 

management in heterogeneous fields. 

Wright et  al. (2004) examined the use of canopy reflectance as a means for 

managing grain protein in wheat. They examined various spectral indices and 
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FIGURE 2.8  Relationship between the NDVI-based INSEY index and yield. (After Raun, 

W.R. et al. 2005a.  Communications in Soil Science and Plant Analysis, 36:2759–2781.) 

concluded that NDVI was as effective as other indices and recommended that can

opy reflectance could be effective in using nitrogen fertilization to manage grain 

protein. 

Kitchen et al. (2010) used a transformed NDVI index, that is, the inverse simple 

ratio (ISR) of a nitrogen-sufficient strip created in maize fields to allow computation 

of a sufficiency index, SI, ISR sufficient/ISR target crop using a Holland Scientific 

ACS-210-based system. They conducted 16 field-scale experiments in maize fields 

over four seasons in three different soil areas. They developed and applied a max

imum profitability algorithm and achieved a $25–$50 per ha profit improvement 

using the technique. 

Raper et al. (2013) evaluated three commercial sensor systems for application in 

management of nitrogen in cotton. The Yara N-Sensor® (Yara International ASA, 

Oslo, Norway), GreenSeeker® Model 505 Optical Sensor Unit (NTech Industries, 

Inc., Ukiah, CA), and Crop Circle® Model ACS-210 (Holland Scientific, Inc., 

Lincoln, NE) systems were evaluated. Plant height relationships with NDVIs were 

strong but sensor readings did not consistently predict cotton leaf N status before 

early flowering. 

In rice culture in China, Xue et al. (2004) found the relationships between leaf N 

accumulation and reflectance in the green band and NIR to green ratio index were 

consistent across the whole growth cycle. The ratio of NIR to green (R810/R560) 

was linearly related to total leaf N accumulation, independent of N level and growth 

stage with correlation in the 0.96 range. Yao et al. (2012) demonstrated an increased 

partial factor productivity of rice farmers by 48% and 65% with a GreenSeeker-based 
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precision management and chlorophyll meter-based site-specific N management, 

respectively, without significant change in grain yield. 

Potential exists for weed detection and spot spraying of weeds through the use 

of canopy reflectance. Weeds may be distinguished from a strongly contrasting 

background, for example, soil. Some research efforts have been focused on distin

guishing weeds from similar backgrounds, for example, crops, using spectral reflec

tance (Wang et al., 2000; Vrindts et al., 2002). The laboratory study conducted by 

Vrindts et al. (2002) was successful in discriminating weed species from maize and 

sugar beet but the field study conducted by Wang et al. (2000) was less successful. 

Imaging-based systems have also been studied (Zhang and Chaisattapagon, 1995; 

Tian et al., 1997; Borregaard et al., 2000; Burks et al., 2000) with promising results. 

Zhang et al. (2012) field tested an image-based spot sprayer that included the ability 

to target a microdosing system that used hot vegetable oil to treat weeds in tomatoes. 

Their system successfully eliminated greater than 90% of two weed species while 

damaging less than 3% of the crop. This system was targeted at organic farming of 

tomatoes. The image-based technologies result in costly implementations and use of 

spectral reflectance alone is relatively insensitive and has not been very successful 

in field implementations. Variable-rate herbicide spraying systems are a concern due 

to the potential for weeds to be undertreated and develop resistance to herbicides. 

2.4.3 IMPLEMENTATIONS  OF CANOPY SENSING  FOR FIELD APPLICATIONS 

Field canopy reflectance measuring systems are generally based on multispectral 

measuring systems. Various implementations of canopy reflectance-based systems 

exist, including those targeted for fertilizer management and one targeted for weed 

management. 

Commercial systems using canopy reflectance for weed management employ 

simple ratio (ρNIR/ρred) to discriminate between weed and soil background. An early 

commercial system patented by McCloy and Felton (1992) used natural illumination. 

The system was effective in discriminating between weeds and soil backgrounds 

(Felton et  al., 1991). The commercial system, DetectSpray®, based on the patent 

was marketed and appears to no longer be available. A later system patented by 

Beck and Vyse (1995) is available in the market today. This system is known as the 

Weedseeker® and is marketed by Trimble Navigation Ltd. This system uses a ratio of 

NIR to red to distinguish green weeds from background material and uses a thresh

old comparison to trigger a spray nozzle integrated with the sensor (Beck, 1995). 

At least four commercial field-machine-based canopy reflectance systems  

designed for fertility management exist. Table 2.4 summarizes the characteristics of 

those systems. A vegetative index that can be used with the system is given, though 

most systems are capable of providing alternate indices. The Claas system uses two 

derived indices to present to users, the IRMI vegetation index and the IBI biomass 

index. The Claas system uses a yield potential map combined with sensing in their 

algorithm to vary fertilization. 

The Claas, AgLeader, and Trimble units are designed for boom mounting and 

view the plant canopy from directly above. The Claas system provides the boom for 

mounting as shown in Figure 2.9a. The Trimble and AgLeader systems are designed 
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TABLE 2.4 
Commercial Field Machine-Based Canopy Reflectance Systems 

Claas AgLeader Trimble Topcon 

Model number ISARIA™ OptRx© GreenSeeker™ CropSpec™ 

Visible wavelength 670 670 660 735 

(nm) 

NIR wavelengths 700, 740, and 730, 780 770 808 

(nm) 780 

Sensor geometry NADIR NADIR NADIR Oblique 45–55° 

Sensor to crop 0.4–1.0 0.25–2.1 0.6–1.6 2–4 

distance (m) 

Sensing footprint – 32° × 6° 0.61 × 0.015 m 2–4 m 

(invariant with 

height) 

Vegetative index REIP NDRE NDVI SR 

Resource Haas (2014) Suddeth et al. Suddeth et al. Tevis (2012), 

(2011), AgLeader (2011), Stone Reusch (2010), 

Technology, 2014. et al. (2003) Kumagai and 

OptRx Crop Shugo (2011) 

Sensors. http:// 

www.agleader.com/ 

products/ 

directcommand/ 

optrx-crop-sensors/, 

Holland (2008) 

to be mounted on the booms of sprayers. Figure 2.10 shows the sensed area for these 

sensors, which are typically operated at 1 m above the crop canopy. The Topcon 

system is designed to be mounted on a tractor cab and views the crop at an oblique 

angle as shown in Figure 2.9b. 

Satellite- and aircraft-borne sensing systems may be used to develop variable-

rate application maps using the same algorithms as those for ground-based systems. 

Some differences exist between sensor systems. Satellite data must be corrected for 

atmospheric interference and illumination effects (Mather, 2004). It is common that 

NDVI and other indices are computed directly from the corrected data. Some dif

ferences between systems exist due to the variations in bandwidth of the particular 

spectral channels of the measuring system. Figure 2.11 shows the relative spectral 

response (RSR) of sensors on the Quickbird satellite (Forestier et al., 2011). In con

trast, Figure 2.12 shows a typical spectral transmittance for interference filters that 

might be used in a polychromatic LED-based sensor design (Holland, 2008). Sensors 

based on either technique may be used to generate an NDVI but the response may be 

slightly different due to the bandwidths used in the sensor. 

A third sensor design, one that depends on monochromatic LEDs to provide the 

bandwidth control (Stone et al., 2003), provides again a slightly different spectral 

sensitivity. Figure 2.13 provides a typical LED relative spectral power output. The 

http://www.agleader.com
http://www.agleader.com
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FIGURE 2.9 Sensor mounting geometries for boom-mounted reflectance sensors, Claas 

Isario™ (a) and the Topcon CropSpec™ (b). 

spectral response is similar to the satellite bands, though narrower in the NIR band 

and NDVIs calculated from this sensor do not match exactly those calculated from 

Quickbird data. 

Without standardization of bandwidths, band shape, as well as center wave

lengths, we should expect that algorithms using a particular sensor will have to be 

adjusted for the particular sensor type. 

Another issue that must sometimes be addressed in utilizing data from image-

based systems is the need to convert camera image data into reflectance images. This 

task normally requires that a white plate (100% reflectance object) be included in 

the image or that the camera capture a white plate image for use in calibration. This 

process is difficult but necessary if the data are to be used in an algorithm that uses 

canopy reflectance. Ideally, each pixel of the camera would be calibrated in the same 

way a reflectance is calibrated. The typical calibration equation is given in Equation 

2.16 where the DN values are the raw response for each pixel. Dark current, the 

DN value for the case where the camera is viewing a completely dark field must be 

subtracted from any camera measurement. Reflectance is then the result of the ratio 

of the dark corrected measurement to the dark corrected white plate measurement.

DN λ λ− DN
ρ =  ,dark_currrent

λ (2.16) 
DNλ,white_plate − DN

 λ,dark_currrent  
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FIGURE 2.10  Optical geometry for the Trimble GreenSeeker reflectance sensor (a), and the 

AgLeader OptRx (b). 

Once the camera has undergone correction for dark current and white plate 

response, the camera is susceptible to changes in scene illumination between those 

under which the camera was calibrated and when the images were captured. These 

changes may be due to sun-angle changes or changes in clouds or haze. It would 

be preferable to have a white plate object within the captured image to compensate 

for these changes. With proper calibration, imaging-based reflectance measurements 

calibrate well with sensor-based measurements (Jones, 2007). 

2.5 SOIL PROPERTY SENSING 

Crop performance is predicated on an adequate crop environment, including soils 

in which the crop grows. Management to improve crop performance may include 

decisions based on soil characteristics and dictate sensing of soil properties. The 
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FIGURE 2.11  Quickbird (Satellite Imaging Corporation, http://www.satimagingcorp.com/ 

satellite-sensors/quickbird/) relative spectral response (RSR) versus wheat reflectance (based  

on estimated RSR). (From Forestier, G. et al. 2011. International Journal of Remote Sensing, 

34:2327–2349, doi: 10.1080/01431161.2012.744488, http://www.satimagingcorp.com/satel

lite-sensors/quickbird/. With permission.) 

particular soil properties sensed is dependent on the potential economic return from 

management actions based on the sensed properties and the difficulty in integrating 

the sensing technology into management practices for the crop. The type of sensing 

necessary for precision farming is also dependent on the spatial as well as temporal 

variation in properties. 

Temporal variability of soil nutrients is well understood and the major soil nutri

ents are classified with regard to mobility (Bray, 1954). Nitrogen is a mobile nutri

ent and its availability varies from season to season (Johnson and Raun, 2003). 

Phosphorus (P) and potassium (K) are classified as immobile and uptake changes 

depending on crop demand. Organic carbon (OC) changes in soils where the total 

content is largely controlled by climate. Carbon supply to plants actually comes via 

CO2 assimilation in the atmosphere via photosynthesis. The impact on sensing is that 

parameters that are associated with nitrogen need sampling before, during, and after 

the growing season whereas sensing parameters associated with P, K, and OC may 

be sampled once per season. 

Spatial variability of soil nutrients impacts the requirements for soil sampling. 

Solie et al. (1996) reported semivariance of soil N, P, K, OC, and pH, where soils 

were sampled at a 0.3 m resolution for two sites. They reported soil property 

http://www.satimagingcorp.com
http://www.satimagingcorp.com
http://www.satimagingcorp.com
http://www.satimagingcorp.com
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FIGURE 2.12 Interference filter bandwidths (Edmund Optics Inc., Barrington, NJ) and 

shapes for interference filter-polychromatic LED-based sensor designs. 
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semivariance ranges of 1.9–5.3 m with most properties near 4 m and P and K at near 

2 m. The range of the semivariance is a measure of the distance beyond which the 

samples are not related and the average difference in the value square of the sample 

pairs does not increase. These distances would be greater than the optimum treatable 

resolutions for precision management of soil properties. Solie et al. (1996) concluded 

that the optimum field element size based on the parameters they measured would 

be 0.75 × 0.75 m. 

Spatial resolution in precision farming systems also depends on technical feasi

bility, cost of the technology, and acceptance by the users of the technology in addi

tion to optimum agronomic resolution. Section width (boom width) resolution is now 

commonplace in sprayer technology and allows application of soil nutrients at near 

3 m resolutions. Overlap and rate control technology is available for spray equipment 

that operates at meter-level resolution (Capstan, 2013). Variable-rate planting equip

ment is available from most agricultural planter manufacturers and from agricultural 

electronics suppliers. The availability of high-resolution application equipment pro

vides opportunity for soil sensing systems. Soil sampling systems while effective in 

securing soil samples for analysis cannot easily provide the spatial resolutions that 

can be delivered by current application equipment. Ten by ten meter resolution soil 

sampling would require 100 samples per hectare. The cost to analyze the samples let 

alone the cost to handle them would not make economic sense. The availability of 

high-resolution application equipment obviates the need for on-the-go soil sensing 

systems that can deliver cost-effective soil property information. 

Adamchuk et al. (2004) and Heege (2013) have reviewed on-the-go soil sensing 

systems. Several technologies have shown good promise and some of those are avail

able on the market. Veris Technologies, Inc. manufactures various types of on-the

go soil property sensing systems for monitoring soil electrical conductivity (EC), 

organic matter (OM) using optical reflectance, and pH. Veris specifies that their 

sensing system can sample EC and OM at 1 Hz and pH roughly on a 20-m grid. 

Control algorithms to apply lime at variable rates according to soil pH are straight

forward. The on-the-go pH sensing system has good potential for a readily justified 

economic return. Veris’ OM system is based on a dual-wavelength soil reflectance 

measurement that operates on a probe under the soil surface, similar to the tech

nology reported by Shonk et al. (1991). Colburn (2000) patented an EC-based sys

tem that implements on-the-go variable-rate fertilizer application control. Geonics 

Limited manufactures EC instruments that are readily adaptable for agricultural 

field use (Sudduth et al., 2005). The availability of high-resolution EC sensing has 

been recognized as an opportunity in control of variable-rate seeding (Doerge, 1999; 

Doerge et al., 2006). Development of effective control algorithms to associate EC, 

OM, and pH with seed population is a remaining significant challenge in refining 

this technology. 

Soil strength measuring systems have been reported (Raper et al., 2003; Adamchuk 

et al., 2006). These systems provide soil data that may be used for variable-rate till

age or to manage compaction. The technology has the potential to be integrated into 

conventional tillage operations, allowing the costs of sensing to be reduced. 

Direct sensing of soil nutrient concentrations with on-the-go sensors could dra

matically improve the efficiency of the production of agricultural crops. These 
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technologies would have the potential to provide low-cost sensed data and could 

be integrated into precision farming systems. Technology for direct sensing of soil 

nutrients is currently an active part of research programs but not yet commercialized 

(Kim et al., 2009). Success of on-the-go pH sensing may be a precursor to practical 

soil nutrient sensing. Some promising technologies have been investigated, includ

ing solid-state ion-selective membrane technology (Birrell and Hummel, 2001) but 

further development is needed in this important area. 

2.6 ISOBUS SUPPORT FOR SENSOR SYSTEMS 

Much of the technology being developed for application in precision farming is based 

on integrated ISOBUS support. ISOBUS is the standardized network communica

tions system for agricultural equipment. ISO 11783, the standard on which ISOBUS 

is based, was developed with the support of precision farming as a requirement. The 

capabilities for transferring application maps to mobile implement control systems 

(MICS), that is, field systems and to transfer back to farm management information 

systems (FMIS) as applied maps is integrated into ISOBUS (ISO/TC23/SC19, 2014). 

Not surprisingly, support for sensor-based control systems is also integrated into 

ISOBUS through ISO 11783 Part 10. 

ISOBUS support for sensor-based rate control systems allows standardized com

munication between sensor systems and rate control systems. This capability allows 

sensor systems manufactured by one manufacturer to communicate with rate control 

systems made by another manufacturer as well as between components made by the 

same manufacturer. The provisions in the part 10 document specify that the task 

controller, the component of ISOBUS systems that sends prescription-based com

mands to implements, manages the connections between sensor systems and rate 

control systems. ISOBUS support for sensor systems also includes the capability 

to allow map-based prescriptions information to be provided to sensor systems and 

allow sensor systems to use algorithms that combine map-based information with 

sensed information to command rate controllers. An expected ISOBUS supported 

function of the rate control system is that it would supply “as applied” information 

back to the task controller, which would allow the task controller to supply as applied 

maps back to the FMIS. 
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3.1 INTRODUCTION 

To achieve the goal of demand-oriented input and variable-rate fertilization for dif

ferent crops and farmland environments, a high-density, high-speed, and low-cost 

supply of spatial information on crops, soil, and environmental conditions is nec

essary. Such information can guide management decisions, including variable-rate 

fertilization, variable-rate pesticide application, and irrigation to form a prescription 

map for agricultural production. 

Conventional techniques for acquiring information on crop nutrition, crop growth, 

yield, and soil nutrition rely mainly on surveys, field sampling, and laboratory analy

sis. For production managers in precision agriculture, the antecedent data, real-time 

data, point data, and relevant materials can be acquired and used as a reference for 

decision making in variable-rate operations. So far, the  greatest barrier to the imple

mentation of precision agriculture lies in the rapid and cost-efficient acquisition of 

spatial information about farmlands. In addressing the requirements for decision 

making in precision agriculture, this section presents methods for acquiring spatial 

information about farmlands using remote sensing techniques. 

3.1.1 	ACQUISITION  OF CROP INFORMATION BASED  ON REMOTE  
SENSING TECHNIQUES 

Crop growth status can be delineated through leaf area, leaf color, leaf inclination 

angle, plant height, and stalk diameter during the growth period. Other characteriza

tions use factors closely related to crop growth such as crop nitrogen, leaf area index, 

and biomass. The monitoring and diagnosis of crop nutrition is the core content of 

regulation and management of crop growth. Compared with healthy vegetation in 

the growth period, vegetation restricted by nitrogen deficiency may undergo a series 

of changes in physiological status, biochemical composition, and canopy structure. 

The vegetation may suffer from small leaves and low biomass if there is a reduction 

in nitrogen and chlorophyll and decreased synthesis of organic nitrogen-containing 

compounds such as proteins, nucleic acids, and lipids. Water stress is one of the most 
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common limitations to photosynthesis and plant primary productivity, and its mea

surement is important for irrigation practices and in drought assessments of natural 

communities (Penuelas et al., 1993). In response to changes in these parameters, the 

plants’ spectra would exhibit a certain change, which serves as the physical basis for 

remote sensing detection of nitrogen content or water content of crops. 

3.1.1.1 Chlorophyll in Crops 
Chlorophyll is the crucial compound for photosynthesis in crops. It also serves as an 

indicator of the growth status of crops. Standard methods for the measurement of 

chlorophyll content include the chemometrics method (McKinney, 1941) and nonde

structive measurement with SPAD (Minolta Camera Co. Ltd., 1989). 

Chlorophyll shows obvious absorption characteristics in the visible band, which 

is strongly correlated with nitrogen in plants, and it usually increases in the upper 

leaves at the expense of the lower leaves when fertilizer is deficient. Hinzman et al. 

(1986) reported that canopy chlorophyll density (CCD), the total amount of chloro

phyll present in the canopy per unit of ground area, was a sensitive indicator of N 

deficiencies in wheat. During the past few decades, various types of spectral indices 

have been used to estimate chlorophyll content (Datt, 1994; Carter, 1994; Brantley 

et al., 2002; Huang et al., 2011; Hunt et al., 2013; Li et al., 2013). Liao et al. (2013) 

used a continuous wavelet transform (CWT) to estimate the chlorophyll content 

of maize leaves in different layers from their visible to near-infrared (NIR) (400– 

1000 nm) spectra. 

3.1.1.2 Nitrogen in Crops 
Nitrogen (N) is a very important nutrient element for crop growth. Timely and 

optimal N fertilizer supply can increase wheat production, minimize environment 

pollution, and increase N use efficiency (NUE). Laboratory-based methods, such as 

preplanting (or pre-sidedress) soil NO3–N (nitrate N) (or NH4 
+–N, ammonium N) 

tests, and plant tissue (sap or petiole) tests, are effective ways for making N fertilizer 

recommendations (Fox et al., 1989; Wu et al., 2007). 

Previous studies have shown that leaf chlorophyll concentration in plants was 

closely correlated to leaf N concentration (LNC) (Shadchina et al., 1998; Serrano 

et al., 2000). Thus, crop N status can be determined from the measurement of leaf or 

canopy spectral reflectance. Generally, assessment of crop N status is based on the 

relationships between LNC of single leaf or whole canopy and spectral parameters. 

Since the spectra are always acquired based on canopy level, the N status should 

also be based on canopy level, when establishing estimation models for N status 

assessment. 

Canopy N density (CND) is a sensitive indicator to detect N deficiency in wheat 

(Zhao et al., 2011). CND defined as the total leaf nitrogen per unit land area can be 

calculated by the following formula: 

CND  = LNC × SLW × LAI (3.1)  

where LNC is leaf nitrogen content; SLW is specific leaf weight; and LAI is leaf 

area index. 
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Under nitrogen stress, the nitrogen in old leaves migrates to new leaves. As a 

result, the lower leaves turn yellow under nitrogen stress, and then such phenom

enon propagates to the upper leaves (Lu et al., 1994). Thus, considering the vertical 

distribution of nitrogen and the corresponding spectral response is of practical sig

nificance. Few field studies have concentrated on the challenging issue of capturing 

leaf N distribution in the crop canopy using remote sensing technology. The existing 

studies can be grouped into three classes according to the hyperspectral data used. 

One class estimated the leaf N content of different vertical layers using spectral data 

obtained from top-view observations (Wang, 2004; Wang et al., 2007). Another class 

employed multiangle canopy reflectance data (Zhao et al., 2006), and the third inves

tigated the spectral reflectance and fluorescence characteristics of different vertical 

leaf layers and their relationships to corresponding leaf N or chlorophyll content 

(Wang et al., 2004). These studies have made important progress in detecting leaf N 

distribution by means of remote sensing. 

3.1.1.3 Water Content of Crops 
Water is an important component of plants since it participates in photosynthesis 

and transpiration. It is also a critical parameter in agricultural irrigation. Tissue 

water content is an indicator of the physiological status of plants, which is usually 

measured by the weighting method (Woods et al., 1982; Zhang et al., 2012). 

Spectral characteristics of leaves are determined by the light absorption and scat

tering characteristics of leaf water, pigments, and dry matter. Leaf water contributes 

primarily to the leaf spectrum by absorbing incident light at the doubling frequency 

or combination frequency of water molecule vibration (e.g., 975, 1200, 1450, and 

1950 nm). 

Remote sensing of liquid water in vegetation has important applications in 

agriculture and forestry (Jackson and Ezra, 1985; Gao and Goetz, 1995). Water 

stress is one of the most common factors limiting photosynthesis and plant 

primary  productivity, and its measurement is important in irrigation practices and 

in drought assessments of natural communities (Penuelas et  al., 1993). The pri

mary effect of water content on leaf spectral reflectance is its absorption of radia

tion. The  reflectance spectra of green vegetation in the 1300–2500 nm region are 

dominated by liquid-water absorption, and are weakly affected by absorption due 

to other  biochemical components, such as protein, lignin, and cellulose (Carter, 

1991; Gao and Goetz, 1995). The spectral reflectance in NIR bands is determined 

by the leaf’s internal structure, its dry matter content (mainly protein, lignin, 

and cellulose) and two minor water-related absorption bands at 975 and 1200 nm 

(Jacquemoud et al., 1996; Penuelas et al., 1997). In addition, there are secondary 

effects of water content on reflectance that cannot be explained solely by the radia

tive properties of water. Some of the secondary effects of water content on leaf 

reflectance are influenced by the transmissive properties rather than the absorp

tive properties of water. When leaf water content (LWC) decreases, the internal 

structure (e.g., the fraction of air spaces in the spongy mesophyll) may also change, 

thereby inducing variations in NIR reflectance (Carter, 1991; Filella and Penuelas, 

1994; Liu et al., 2004). 
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It may be possible to use crop reflectance to estimate LWC. LWC was calculated as 

LFWC − LDWC
LWC = × 100% (3.2) 

 LFWC  

where LFWC is the sample fresh leaf mass (kg) and LDWC is the sample dry leaf 

mass (kg). 

3.1.1.4 Crop  LAI 
LAI is an important indicator of the growth status of crops and an important basis 

for variable-rate fertilization. It can also be used as a reference for variable-rate 

irrigation. LAI was estimated by multiplying the plant population by the leaf area 

per plant as described in Kar et al. (2006). Direct or semidirect methods involve a 

measurement of leaf area, using either a leaf area meter or a specific relationship of 

dimension to area via a shape coefficient (McKee, 1964; Marshall, 1968; Manivel 

and Weaver, 1974). LAI can also be measured using the LAI-2000 instrument 

(LI-COR, USA). 

The method for LAI inversion based on remote sensing technology utilizes the 

variation in spectra of crops under LAI measurement data. Timely, accurately, and 

dynamically obtaining crop LAI is beneficial for suitable field management strate

gies in agricultural production. Until now, the methods for LAI estimation mainly 

include statistical algorithms (Broge et al., 2001; Wang et al., 2011), nonparametric 

algorithms (Smith et  al., 1991; Fang et  al., 2003; Kalacska et  al., 2005), physical 

models (Qin et al., 2009; Xiao et al., 2009; Richter et al., 2011; Dorigo, 2012), and 

data assimilation algorithms (Dente et al., 2008; Sabater et al., 2008; Thorp et al., 

2010; Wang et al., 2010). 

3.1.2 ACQUISITION  OF FARMLAND DATA  BY MACHINE 

Acquisition of farmland information by machine refers to the acquisition of farm

land information using calculators and sensors carried by tractors and reapers. In 

this section, a detailed description is provided for rapid acquisition of crop yield and 

soil nutrition information by machine-borne equipment (Zhao, 2009). 

3.1.2.1 Acquisition of Crop Yield Information by Combine Harvester 
Acquisition of crop yield data in the plot and plotting the spatial distribution 

diagram are the starting points of precision agriculture. They are also the basis 

for achieving scientific regulation of input and making decisions about crop pro

duction. The commercialized yield estimation systems carried by a combine har

vester mainly include the AFS system (CASE, USA), the FieldStar system (Massey 

Ferguson, UK), the GreenStar system (John Deere, USA), and the PF system (Ag 

Leader, USA). 

The yield estimation system mounted on axial flow−type combine harvesters 

(CASE) includes a DGPS device, an intelligent terminal, a wheel rotation speed 
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sensor, a grain elevator rotation speed sensor, a header height potentiometer, a grain 

flow sensor, a grain water content sensor, a memory card, and graphic software 

(Figure 3.1). The grain flow sensor is located on top of the grain elevator. After the 

grain enters the top of the elevator, it hits the impact plate of the sensor under the 

guidance of the deflector. The impact signals are converted to electric signals as 

output. The output of the signal is proportional to the grain flow. The Hall sensor is 

used to measure grain elevator rotation speed. The output signals of the sensor are 

used to correct the output signals of the flow sensor and to restrict the working status. 

The signal processing unit is responsible for integration and processing of output 

from the wheel speed sensor, the elevator rotation speed sensor, the grain water con

tent sensor, the header height potentiometer, and the grain flow sensor. The distance 

traveled by the machine, working area, transient grain water content, and transient 

grain flow are measured. Differential GPS (DGPS) provides position information 

on these signals. After these signals are transmitted to the intelligent terminal, the 

measurement errors are effectively reduced by software through in situ calibration. 

Then the data are recorded on the data card, and the crop yield of each plot at each 

spatial location is obtained. The data card is carried back to the office, and special 

data processing software is used to generate the spatial distribution diagram of yield. 

The result is utilized by yield analysis and serves as the basis for implementation of 

variable-rate farming. 

Instant Yield Map, a software program for generating yield diagrams by CASE, 

can not only generate point diagrams, grid maps, smooth grid maps, and other line 

graphs of yield based on the original data stored in the data card, but also enables 

the management of yield data by harvest time and place. The yield data are classified 

at equal intervals or at those defined by the user. Each category is represented by 

different colors, allowing the field conditions to be rapidly visualized and low-yield 

areas to be marked out. 

Control unit 

Grain flow 
sensor 

Header high
speed sensor 

High speed 
sensor 

Grain water 
content sensor 

GPS receptor 

Display terminal SMS software 

FIGURE 3.1  Yield estimation system on an axial flow−type combine harvester. 
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3.1.2.2 Acquisition of Soil Nutrition Data 
Spatial distribution of soil fertility is a very important factor that affects  decision 

making in precision agriculture. Determination of the spatial variation of soil fertil

ity and the application of relevant data to mechanized variable-rate fertilization are 

major concerns in the field of precision agriculture. The Beijing Research Center for 

Agricultural Information Technology has developed an automatic soil sample collec

tion system consisting of a sampling device and a recording device. This system can 

arrange the sampling points and design the sampling paths with geographic infor

mation system (GIS). Soil samples are positioned by GPS and the sampling is done 

automatically. The coordinates of the sampling points and the results of soil analysis 

are managed by this information technique.

 1.  Recording  device 

  The recording device is the auxiliary system for soil sampling. It not 

only acquires the geographical coordinates and other information on the 

 sampling points, but also provides a platform for sampling design and 

management. A complete soil   information sampling system consists of five 

basic functions: sampling design,  sampling navigation, sample positioning,  

data analysis, and detection. 

   Structurally, the soil information sampling system is composed of  

peripherals and the software. Peripnherals include the GPS receiver and 

various types of sensors. The software includes application programs and 

databases. Users are connected with each functional module via the man– 

machine interface. The structure of the system is shown in Figure 3.2.

 2.  Collection  device 

  The collection device has 12 components (Figure 3.3): sampling tube, a 

hydraulic cylinder of guider, a locator on sampling head, a slide rail for 

User 

Sampling
design module 

Sampling
route design 

Database of 
geographical

locations 

Database of 
analysis
results 

Sampling
point 

arrangement 

Navigation
module 

Sampling
positioning

module 

Data 
analysis
module 

Analysis
module Peripherals 

GPS receiver 

Sensor 

Man–machine conservation interface 

FIGURE 3.2  Schematic of the soil information sampling and recording system. 
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Sampling tube 
Guider Hydraulic cylinder Column 

Supporting foundation 

Fixed bearing
of power unit Hydraulic power unit 

Pillar-oriented fixator 
Locator of sampling head 

Slide trail 

Reinforcing sleeve of foundation 

FIGURE 3.3  The automatic soil collection system. (From NERCITA, China.) 

the supporting frame of the hydraulic cylinder, a reinforcing sleeve of the 

seat, a hydraulic power unit, a fixed bearing of the power unit, a supporting 

base of the pillar-oriented fixator, a pillar, and a GPS recording system. The 

hydraulic power unit is driven by a direct-current motor. Through the pres

surization of hydraulic oil in the hydraulic oil tank, high-pressure hydraulic 

power is supplied to the system. 

The automatic soil collection device is fixed on the top of the lateral 

trough of a pickup. The soil sampling device slides outward via the slide 

trail of the fixed frame of the hydraulic cylinder. The sampling depth is 

adjusted by the operator. Once the soil sampling depth is confirmed, the 

hydraulic module performs the work. 

3.2  	INTERPRETATION OF CROP INFORMATION 
FROM REMOTE SENSING 

The greatest barrier to the implementation of precision agriculture is cost efficiency. 

Development of fast and low-cost methods to acquire spatial information on farm

lands is needed. The recent development of airborne and spaceborne remote sensing 

provides a potential means for the efficient and low-cost acquisition of farmland 

information needed in precision agriculture. 

Agricultural remote sensing relies on spectral theory for ground objects and green 

vegetation, with the focus placed on spectral information of ground objects such as 

plants and soil. The physiological and biochemical parameters of the leaves of green 

vegetation determine the absorption, scattering, and reflection characteristics at 

different wavelengths, which form the basis for agricultural remote sensing. At pres

ent, remote sensing technology has been widely applied in the extraction of key bio

logical and physicochemical parameters of crops, such as chlorophyll, nitrogen, LAI, 

aboveground biomass, water content and plant type. The relationship between crop 

characteristics (geometric structure of canopy, biochemical composition of leaves, 

and internal tissue structure) and spectral reflection characteristics of the canopy 

(especially in the visible, NIR, and middle-infrared band) is critical. Remote sensing 

has already proven to be an important means of farmland information acquisition. 
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However, remote sensing data cannot be directly applied in decision making in pre

cision agriculture. Information interpretation is needed to establish models repre

senting the correlation between remote sensing information and the growth status 

of crops. A method for the inversion of agricultural parameter space and map plot

ting techniques should be established to provide support for farmland production 

management. 

3.2.1  	CROP CHLOROPHYLL  AND NITROGEN CONTENT  
INVERSION  THROUGH REMOTE SENSING 

In this section, LNC and CND were inverted through remote sensing spectral 

parameters (Zhao et al., 2012). Then, using maize as the subject material, the ver

tical distribution of chlorophyll is retrieved with sensitive parameters and wavelet 

transform techniques (Liao et al., 2013). 

3.2.1.1  	Wheat Leaf Nitrogen Concentration and 
Canopy Nitrogen Density Estimation 

3.2.1.1.1 Experiment and Data Collection 
The experiment was conducted at the China National Experimental Station for 

Precision Agriculture. Twenty-five winter wheat cultivars, including Xiaoyan 54, 

Lumai 21, Laizhou 3279, P7, Gaocheng 8901,76-2, Jing 411, Jingwang 10, Nongda 

3214, Nongda 3291, I-93, Lunxuan 201, Chaoyou 66, Chaoyou 69, CA 9722, 95128, 

9428, Jingdong 8, Zhongyou 9507, Baili 981, Zhongmai 9, Zhongmai 16, 95021, and 

Linkang 2 and 6211, were investigated in the experiment. A randomized complete 

block design with three replications was used. The plot size was 5 × 3 m. Each plot 

received 180 kg ha−1 area, 225 kg ha−1 (NH4)2HPO4 (diammonium phosphate), and 

150 kg ha−1 K2SO4 before sowing. Topdressing N with 280 kg ha−1 urea was applied 

with two splits, 50% at Feekes 3.0 (March 25, 2003) and 50% at Feekes 7.0 (April 

16, 2003). The Feekes scale is a system used by agronomists to identify the growth 

and development of cereal crops. 

In each plot, a 1-m2 area of wheat canopy was selected for canopy spectral reflec

tance measurements, and physiological and biochemical analyses. Measurements 

were performed eight times at Feekes 4.0 (April 4, 2003), Feekes 5.0 (April 12, 

2003), Feekes 8.0 (April 21, 2003), Feekes 10.0 (April 29, 2003), Feekes 10.5.1 (May 

8, 2003), Feekes 10.5.3 (May 16, 2003), Feekes 10.5.4 (May 24, 2003), and Feekes 

11.1 (June 1, 2003). Feekes 4.0 is the beginning of erection of the pseudostem. At 

Feekes 5.0, the wheat plants become strongly erect. When approaching Feekes 8.0, 

the flag leaf is visible. Feekes 10.0 is the booting stage. At Feekes 10.5.1, the wheat 

is flowering. Flowering is complete at the base of the spike at Feekes 10.5.3. Upon 

reaching Feekes 10.5.4, wheat flowering is complete and the kernels are watery ripe. 

Feekes 11.1 is the milky ripe stage. Feekes 4.0, Feekes 5.0, Feekes 8.0, and Feekes 

10.0 are growth stages in which vegetative growth develops synchronously with 

reproductive growth. These stages determine the spike number and grain number 

per spike. Field management is always applied at these stages. Feekes 10.5.1, Feekes 
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10.5.3, Feekes 10.5.4, and Feekes 11.1 are reproductive growth stages and the wheat 

1000 kernels weight and grain quality are significantly affected by N availability at 

these stages. 

Canopy spectral measurements were taken from a height of 1.3 m above 

ground (the height of the wheat was 90 ± 5 cm at maturity), under clear sky con

ditions between 10:00 and 14:00 hrs, using an ASD FieldSpec Pro spectrometer 

(Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view 

(FOV) fiber optics, operating in the 350–2500 nm spectral region with a sam

pling interval of 1.4 nm between 350 and 1050 nm, and 2 nm between 1050 and 

2500 nm, and with spectral resolution of 3 nm at 700 nm, and 10 nm at 1400 nm. 

After canopy spectral measurements were completed, a flag was placed in the FOV 

of the ASD to mark the location of measurement. Samples for LAI, SLW (g m−2), 

and LNC determination were collected on the same day as canopy spectral reflec

tance measurements. All plants in the FOV of the ASD were cut at ground level 

with scissors immediately after spectral measurements, placed in a plastic bag, and 

transported to the laboratory for subsequent analysis. For each sample, all green 

leaves were separated from stems. LAI was determined by a dry weight method. 

LNC (%) was determined by the Kjeldahl method (Bremner, 1965) with a B-339 

Distillation Unit. 

3.2.1.1.2 Results and Conclusions 
Thirteen narrow-band spectral indices (difference vegetation index [DVI], normal

ized difference vegetation index [NDVI], soil-adjusted vegetation index [SAVI], 

red-edge position [REP], photochemical reflectance index [PRI], structure insensi

tive pigment index [SIPI], green normalized difference vegetation index [GNDVI], 

optimized soil-adjusted vegetation index [OSAVI], normalized difference water 

index [NDWI], water band index [WBI], transformed chlorophyll absorption in 

reflectance index [TCARI], nitrogen reflectance index [NRI], and TCARI/OSAVI), 

three spectral features parameters associated with absorption bands centered at 670 

and 980 nm, and another three related to reflectance maximum values located at 

560, 920, 1690, and 2230 nm were calculated. It was demonstrated that REP is a 

good indicator for winter wheat LNC estimation. For CND, the largest R2 among 

the growth stages was observed for GNDVI (R2 = 0.83**) at Feekes 10.5.3 (Table 

3.1 and Figure 3.4). The LWC ranged from 61% to 84% from Feekes wheat cul

tivars and decreased with plant development. The strongest relationships of LNC 

and CND with spectral parameters at later growth stages were also attributed to the 

lower LWC. Plant water status provided information that can be used to assess crop 

growth under drought conditions. The two narrow-band spectral indices involving 

water absorption bands NDWI and WBI were well correlated with CND through 

the growth stages (Table 3.1). To show the relationships of LNC and CND to a given 

spectral parameter in two opposite growth stages, the NDVI and ABD normalized to 

the area of absorption feature (NBD) at 670 nm (NBD670) were plotted against LNC 

and CND (Table 3.2). When taking only these two spectral parameters, NDVI and 

NBD670, into consideration, the differences in correlation results for LNC with both 

NDVI and NBD670 between Feekes 4.0 and Feekes 11.1 were greater than those for 

CND (Figures 3.4 through 3.6). 
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FIGURE 3.4  The best correlations between LNC (a) (at growth stage Feekes 11.1) or CND 

(b) (at growth stage Feekes 10.5.3) and the narrow-band spectral indices. Note: n is the sam

ple number and p is the statistical significance. (From Zhao, C.J. et al. 2012. International  
Journal of Remote Sensing, 33(11):3472–3491. With permission.) 

Pearson correlation analysis indicated that significant correlations between 31 

spectral parameters and LNC existed at Feekes 8.0, Feekes 10.0, Feekes 10.5.1, 

Feekes 10.5.3, and Feekes 11.1 (Table 3.3). In contrast, relationships between the 

31 spectral parameters and CND were consistently significant. Meanwhile, the 

correlation coefficient (r) values between the 31 spectral parameters and CND were 

generally higher than those of LNC. Thus, CND was more sensitive to winter wheat 

canopy spectral variation than was LNC. The spectra used in this study were can

opy-level parameters, but LNC was a leaf-level parameter, which is a possible reason 

why LNC is less sensitive than CND to winter wheat canopy spectra. 

For the 31 spectral parameters, REP showed the best relationship with LNC at 

Feekes 11.1 (R2 = 73**, **significant at 0.01 level), followed by SIPI at Feekes 10.5.3 

(R2 = 36**) and TCAR at Feekes 10.0 (R2 = 26**). REP was also significantly cor

related with LNC at Feekes 8.0 (R2 = 21*, *significant at 0.05 level) and Feekes 10.5.3 

(R2 = 21) (data not shown). Danson and Plummer (1995) stated that the red edge 

responded more linearly to LAI and chlorophyll compared to the classical NDVI, 

which often suffers from saturation problems, even at relatively low LAI values 

(<3.0). Our research demonstrated that REP is a good indicator for winter wheat 

LNC estimation. For CND, the largest R2 values among the growth stages were 

observed for GNDVI (R2 = 0.83**) at Feekes 10.5.3. A_Area670, SIPI, DVI, NDWI, 

R_Area1690, WBI, and REP were significantly correlated with CND at Feekes 

4.0 (R2 = 0.68**), Feekes 5.0 (R2 = 0.31**), Feekes 8.0 (R2 = 0.69**), Feekes 10.0 

(R2 = 0.46**), Feekes 10.5.1 (R2 = 0.29**), Feekes 10.5.4 (R2 = 0.73**), and Feekes 

11.1 (R2 = 0.75**), respectively, as well. 

The most encouraging findings in this section were that REP was a good indica

tor for winter wheat LNC estimation and the absorption features derived from the 

wavelength centered at 670 nm, especially NBD670, proved to be reliable indicators 

for assessing wheat canopy N status. Therefore, winter wheat canopy N status can be 

assessed with both CND and spectral features parameters. This information is useful 
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FIGURE 3.5  Relationship of LNC (a) and CND (b) with NBD670 at Feekes 4.0 and Feekes  

11.1. Note:  n is the sample number and  p is the statistical significance. (Adapted from Zhao, 

C.J. et al. 2012. International Journal of Remote Sensing, 33(11):3472–3491.) 
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FIGURE 3.6  Relationship of LNC (a) and CND (b) with NDVI at Feekes 4.0 and Feekes  

11.1. Note: n is the sample number and p is the statistical significance. (From Zhao, C.J. et al. 

2012.  International Journal of Remote Sensing, 33(11):3472–3491. With permission.) 

for developing nondestructive monitoring techniques for spatial variation in N status 

in wheat with ground-based hyperspectral data or airborne and satellite imagery. 

3.2.1.2  	Estimation of Crop Vertical Chlorophyll Content and 
Nitrogen Content Distribution with Remote Sensing 

3.2.1.2.1 Experiment and Data Collection 
The experiment was conducted at the China National Experimental Station for 

Precision Agriculture during 2011–2012. The crop was summer maize, including 

Nongda 108 and Jinghua 8, a semicompact and a compact maize with respect to can

opy morphology. Three nitrogen treatments with 0 kg (N0), 337 kg (N1), and 675 kg 
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(N2) per ha were designed to produce different chlorophyll contents. The maize was 

divided into two layers at the jointing stage and three layers at the other stages; leaf 

samples were collected from the different layers at each stage. Hyperspectral reflec

tance was measured using the ASD Fieldspec FR spectroradiometer (Analytical 

Spectral Devices; Boulder, CO, USA). After the spectra were measured, leaf samples 

were collected using a hole punch. The leaf samples were extracted with 80% ace

tone for 24 h in the dark at 22°C. Chlorophyll a, chlorophyll b, and total chlorophyll 

content were analyzed in lab (Liao et al., 2013). 

To investigate the performance of chlorophyll spectral indices, 10 different spec

tral indices designed to estimate chlorophyll content were selected (Table 3.4). The 

determination coefficient (R2) and root mean square error (RMSE) were used to 

evaluate precision of the fit of the linear regression model to experimental data. 

A CWT was used to extract accurate spectral information from the hyperspectral 

reflectance, using a mother wavelet function to convert the hyperspectral reflectance 

into several wavelet coefficients at specific scales, then generating the correlation 

scalogram between the wavelet coefficients and chlorophyll content. As the reflec

tion peak of chlorophyll at 550 nm is similar to the Mexican hat wavelet, it was 

used as the basis for the mother wavelet. The CWT was conducted at dyadic scales 

TABLE 3.4 
Correlation Analysis between Spectral Indices and Chlorophyll Content 
Derived from the Calibration Dataset
 

Spectral Indices 

SR705: R750/ R705
 

ND705: (R750−R705)/ 


(R750 + R705)
 

mSR705: (R750−R445)/ 


(R705−R445)
 

mND705: (R750−R705)/ 


(R750 + R705−2R445)
 

DD: (R750−R720) − (R700−R670)
 

BmSR: (BR750−BR445)/ 


(BR705−BR445) 

Green model: (R800/ R550)−1 

(R800/ R550)−1 

Red edge model: (R800/ R700)−1 

Chlgreen: (R760−800)/(R540−560)−1 

Chlred edge: (R760−800)/ 

(R690−720)−1 

Upper Layer Middle Layer
 

R2 (%) RMSE R2 (%) RMSE
 

80.85a 5.55 82.40a 7.95 

81.04a 5.52 79.81a 8.52 

81.20a 5.54 83.23a 7.87 

82.92a 5.32 83.46a 7.79 

82.50a 5.31 83.83a 7.63 

83.30a 5.35 83.31a 7.72 

79.66a 5.73 82.87a 7.85 

75.72a 6.25 76.82a 9.15 

79.37a 5.75 82.59a 7.93 

80.14a 5.67 83.21a 7.78 

Lower Layer All Data 

R2 (%) RMSE R2 (%) RMSE 

81.49a 9.68 78.87a 7.99 

81.03a 9.67 78.13a 8.13 

78.03a 10.25 78.06a 8.21 

80.53a 9.59 79.70a 7.89 

83.24a 8.97 81.81a 7.43 

80.84a 9.78 81.85a 7.23 

82.74a 9.09 81.05a 7.57 

78.08a 10.24 73.52a 8.94 

82.47a 9.16 80.72a 7.64 

81.87a 9.31 80.02a 7.78 

Source:	 Liao, Q.H. et  al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With 

permission. 

Note: ap < 0.001, bp < 0.01, cp < 0.05. 
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21, 22, 23,…, 210. The scales were defined as 1, 2, 3,…, 10, discarding scales greater 

than 210 as they carried little spectral information. This CWT was conducted using 

MATLAB® 7.1 (Natick, MA, USA). 

The maize dataset consisted of 65 upper layer leaves, 69 middle layer leaves, 

and 46 lower layer leaves. The dataset for each layer was randomly divided into 

calibration (60%) and validation (40%) subsets. The calibration dataset was used to 

build estimation models between the wavelet coefficients and chlorophyll  content by 

simple linear regression, whereas the validation dataset was used to test the regres

sion model. The R2 and RMSE were used to assess the predictive performance of the 

estimation models. All statistical analyses were conducted using SPSS 16.0. 

3.2.1.2.2 Results and Discussion 
It is known that variation in chlorophyll content can be induced by different N 

treatments. For this reason, three nitrogen gradients were designed. Since the chlo

rophyll content differs little between Nongda 108 and Jinghua 8, in order to inves

tigate the variation of chlorophyll content in different maize leaf layers, means and 

standard deviations were calculated. The mean values of chlorophyll content in the 

middle layer can reach 49.14 μg cm−2, which is greater than that in the upper layer 

(40.02 μg cm−2), but the differences among the three layers later vanished as nutri

ent (such as N, P, and K) were transported to the middle and upper layers in the 

trumpet stage. During the anthesis–silking and maturation stages, the chlorophyll 

content of the lower layer was obviously reduced as a result of nutrient accumulation 

in the earleaf for grain-filling, and as the lower and upper leaves aged, the chloro

phyll content decreased from 38.29 to 25.30 μg cm−2. Leaves with lower chlorophyll 

content had the highest reflectance in the visible range and the lowest reflectance in 

the NIR waveband, similar to other crops. The most obvious change in leaf spectral 

reflectance in the visible region was near 550 nm, especially at the maturation stage; 

the spectral reflectance ranged from 11.1% to 17.8% between the middle and lower 

layers. This waveband is usually not used directly to construct the spectral indi

ces because of the effects of other pigments; the red-edge region (670–800 nm) is 

usually used to investigate the variation of chlorophyll content. 

To compare the estimation capacity of the spectral indices with that of the wavelet 

transform, we used 10 leaf-scale spectral indices of chlorophyll content. These spec

tral indices mainly included simple ratios of reflectance (Rx/Ry), normalized ratios of 

differences of reflectance ([R − R ][R + R ]), and reflectance derivatives (dR /dR ).x y x y x y

As spectral indices, first derivative reflectance of modified simple ratio index  

(BmSR) and double difference index (DD), which is defined in Table 3.4, considered 

plant functional type, leaf structure, leaf developmental stage, specular reflection, 

and the variation range of chlorophyll content. These indices exhibited good results 

for estimating chlorophyll content. 

The hyperspectral reflectance of the different layers and all datasets were trans

formed using a CWT. Figure 3.7a, c, e, and g shows the correlation between the 

wavelet coefficients and chlorophyll content, with the vertical axis and horizontal 

axis representing the decomposition scale and wavelength, respectively. The high

lighting represents the wavelet regions with high R2, whereas the dark portion rep

resents regions that are less sensitive to chlorophyll content. Figure 3.7b, d, f, and h 
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FIGURE 3.7 Hyperspectral reflectance of maize leaves in different layers and at different 

growth stages. (a, c, e, g) are correlation scalograms between the wavelet coefficients and 

chlorophyll content, with the vertical axis and horizontal axis representing the decomposition 

scales and wavelength, respectively, (b, d, f, h) are selected wavelet features sensitive to chlo

rophyll content. A, B, C, D, E, F in (b, d, f, h) indicate the wavelet feature regions that were 

found to be sensitive to the chlorophyll content for the different maize layers. (From Liao, 

Q.H. et al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With permission.) 
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indicates the extraction of wavelet features that are sensitive to chlorophyll content. 

These features were chosen as follows. First, the R2 values for chlorophyll content and 

the wavelet coefficients were computed using the CWT. Second, all significant fea

tures (p < 0.0001) were ranked in descending order based on R2, and the top 1% was 

retained. The highest R2 and corresponding scales and wavelengths for the significant 

features were then identified. Figure 3.7b shows that seven sensitive wavelet features 

were found for the upper layers, and the wavelengths of all the wavelet features were 

in the 550 or 700 nm region, which is sensitive to chlorophyll content. This result is 

similar to the selection of wavebands used to design the chlorophyll spectral indices. 

The highest R2 of this layer was 92.25% (Table 3.5), which is higher than those of 

the spectral indices for this layer. It should be noted that the most sensitive wavelet 

region was located at 569 nm, which is close to the strong reflection peak of chlo

rophyll. Figure 3.7d demonstrates that five sensitive wavelet features were extracted 

from the correlation scalogram (Figure 3.7c). The most sensitive feature was located 

at 766 nm and scale 2; the corresponding R2 was 91.46% (Table 3.5), which was also 

an improvement over the spectral indices. The chlorophyll content of this layer is 

much higher than that of the upper layer, such that all wavelet features moved to the 

red-edge region (680–800 nm), in accordance with other studies. Figure 3.7f shows 

that five wavelet features were sensitive to chlorophyll content in the lower layer; the 

highest R2 (94.85%) was obtained at 760 nm and scale 1. These wavelet features were 

also evident in the red-edge region. Many studies have found that when chlorophyll 

content decreases, the red edge shifts toward a shorter wavelength. 

Figure 3.7a, c, e, and g shows the correlation scalogram between the wavelet coef

ficients and the chlorophyll content; Figure 3.7b, d, f, h indicates the extraction of 

wavelet features that are sensitive to the chlorophyll content. 

TABLE 3.5 
Correlation Analysis between the Wavelet Features and Chlorophyll 
Content Derived from the Calibration Dataset 

Upper Layer Middle Layer Lower Layer All Data 

Feature Feature Feature Feature 
Location Location Location Location 

Code and Scale R2 (%) and Scale R2 (%) and Scale R2 (%) and Scale R2 (%) 

A 567, 2 91.62a 766, 2 91.46a 760, 1 94.85a 768, 2 89.91a 

B 568, 3 91.99a 722, 3 90.31a 759, 2 94.18a 721, 3 89.89a 

C 692, 3 92.13a 770, 3 91.06a 721, 3 93.54a 770, 3 89.90a 

D 509, 4 91.77a 726, 4 90.76a 765, 3 93.75a 724, 4 90.50a 

E 569, 4 92.25a 782, 4 90.43a 778, 4 93.41a 782, 4 89.64a 

F 724, 4 91.96a − − − − 723, 5 89.80a 

G 725, 5 91.87a − − − − − − 

Source: Liao, Q.H. et  al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With 

permission. 

Note: ap < 0.001, bp < 0.01, cp < 0.05. 
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FIGURE 3.8  Plots of measured versus predicted chlorophyll content based on the mod

els developed from the most sensitive wavelet features. (a) Upper layer, (b) middle layer, (c) 

lower layer, and (d) all the data. (From Liao, Q.H. et al. 2013. Intelligent Automation & Soft  
Computing, 19(3):295–304. With permission.) 

The results support this conclusion and show that the position of a sensitive wave

let feature in the upper layer moved 6 nm to a shorter wavelength when compared 

with the middle layer. Figure 3.7h shows that in the dataset of all the layers subjected 

to the CWT, the highest R2 was 90.50%, which is higher than the spectral indices of 

all the layers. 

The position of the most sensitive wavelet feature was located at 724 nm, close to 

the red-edge position, indicating that this wavelength position is a good indicator to 

use in estimating the variation of chlorophyll content. Next, they applied the linear 

regression models resulting from the calibration dataset to the validation dataset. 

Figure 3.8a–d shows that data points dispersed close to the 1:1 line, and all the pre

dicted R2 values of the different layers exceeded 90%. 

3.2.1.3  	Evaluation of Crop Nutrition and Growth Status  
Based on Airborne Remote Sensing 

Hyperspectral remote sensing can obtain refined spectral data on the crop canopy 

or leaves, from which we can determine the growth status, water and fertilizer 

deficiency, nutrition content, as well as grain quality and yield information on crops. 

Thus, precision agriculture has led to progress in hyperspectral remote sensing 
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techniques (Moran et al., 1997). Utilizing the red-edge characteristics of operative 

modular imaging spectrometer (OMIS) images, statistical analysis is performed on 

the correlation of leaf chlorophyll, total nitrogen (TN), soluble sugar, and water con

tent with spectral characteristics. The remote sensing model of biochemical param

eters is established based on OMIS images. Maps of biochemical parameters are 

generated and then used for the analysis of growth status of crops (Liu, 2002). 

The experiment was carried out at the National Experiment Station for Precision 

Agriculture in 2001 using winter wheat. OMIS images were acquired by airborne 

sensors on April 25, 2001. During the flight, biochemical parameters were also sam

pled, including chlorophyll, TN, soluble sugar, LWC, and LAI. Using the inverted 

Gaussian model, the red-edge parameters of the spectra were calculated, and cor

relation analysis was performed with the biochemical composition of the canopy. 

Table 3.6 lists the multiple correlation coefficients of chlorophyll, TN, sugar, and 

LWC with red-edge spectral parameters of OMIS images. The remote sensing model 

of chlorophyll, TN, sugar, and LWC was established according to the position of the 

red edge (Table 3.7). 

Using the above model, maps of biochemical parameters such as chlorophyll, TN, 

soluble sugar, and LWC were plotted, as shown in Figure 3.9a–d. Figure 3.10 shows 

the results for color composition of the maps of three biochemical parameters, which 

are chlorophyll ab content (R), TN (G), and soluble sugar (B). R, G, and B in the 

brackets represent the three primary colors (red, green, blue) used for color composi

tion. In the late jointing stage, the plots grown with winter wheat having high sugar, 

low nitrogen, and low chlorophyll are shown in blue. For the plots, the crops lack 

fertilizer and may enter the reproductive growth state before those with fertilizer. 

The plots of winter wheat having high nitrogen, high chlorophyll, and low sugar are 

shown in yellow. These nutritionally adequate plots are still in the vegetative growth 

stage. The growing status of winter wheat can be evaluated by color, facilitating 

decisions on agricultural management. 

TABLE 3.6 
Coefficients of Correlation between Biochemical Composition and 
Red-Edge Spectral Parameters of OMIS Images (n = 45) 

Chemical λp λo σ IG-R2 NDVI 

Chlorophyll 0.408 0.429 0.182 0.305 0.430 

Total nitrogen 0.568 0.532 0.176 0.515 0.422 

Sugar 0.560 0.510 0.202 0.485 0.460 

Foliar water 0.247 0.147 0.006 0.176 0.301 

Source:	 Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision Agriculture. 

Postdoctoral research report of Institute of Remote Sensing Applications, Chinese 

Academy of Sciences. With permission. 

Note:	 λo is the spectral position of the red trough corresponding to chlorophyll absorption; λp is 

the spectral position of the red edge; and σ is the variance term of the inverted Gaussian 

model and the difference between the spectral position of the red edge and red trough for 

vegetation. It corresponds to the width of the absorption trough of the red edge. 



 

 

 

   

   

   

  

Model	 R2 

N = −126.4563 + 0.3051*λp − 0.0061*λo − 84.9024*IG-R2 0.597 

Chlorophyll = −285.3746 + 0.1117*λp + 0.2115*λo + 61.9571*IG-R2 0.458 

Sugar = 93.386 – 0.3042*λp + −0.4114*λo + 421.9152*IG-R2 0.443 

Water = 74.7180 + 1.0473*λp + 0.6955*λo − 276.5877*IG-R2 0.301 
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TABLE 3.7 
Remote Sensing Model of Chlorophyll, Total Nitrogen, Sugar, 
and Leaf Water Content 

Source:	 Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision 
Agriculture. Postdoctoral research report of Institute of Remote Sensing 

Applications, Chinese Academy of Sciences. With permission. 
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FIGURE 3.9 (See color insert.) Map plots of biochemical parameters, including chloro

phyll, total nitrogen, soluble sugar, and leaf water content. (a) Chlorophyll concentration 

(mg g−1), (b) nitrogen concentration (%), (c) soluble sugar concentration (%), and (d) leaf water 

content (%). (From Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision 
Agriculture. Postdoctoral research report of Institute of Remote Sensing Applications, 

Chinese Academy of Sciences. With permission.) 

3.2.2 CROP LAI ESTIMATION  THROUGH REMOTE SENSING 

The LAI is a major indicator for crop growth monitoring and yield estimation. Actual 

observed data provide statistical properties of crop LAI, whereas crop simulation 

models provide physical properties of LAI within the whole crop growth period. In 
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FIGURE 3.10  (See color insert.) Pseudocolor composition map of biochemical parameters, 

including chlorophyll, total nitrogen, and soluble sugar. Red lines: The crops grow poorly 

in areas with high sugar, low nitrogen, and low chlorophyll. Green lines: The crops grow  

well in the areas with low sugar, high nitrogen, and high chlorophyll. (From Liu, L.Y. 2002. 

Hyperspectral Remote Sensing Application in Precision Agriculture. Postdoctoral research 

report of Institute of Remote Sensing Applications, Chinese Academy of Sciences. With 

permission.) 

the work of Dong et al. (2012), a data assimilation scheme of integrating observa

tions and CERES-Wheat model based on the ensemble Kalman filtering (EnKF) 

algorithm is proposed for LAI estimation (Kalman, 1960; Evensen, 2003). 

3.2.2.1 Experiment and Data Collection 
The field experiments of winter wheat Jingdong 8 were conducted in 2002 at the 

Xiaotangshan National Experiment Station for Precision Agriculture in Changping 

district, Beijing. In the experiment, there were 16 testing areas, each 32.4 m × 30 m; 

four water treatments and four fertilizer treatments were conducted in these areas. 

March 25, April 2, April 10, April 18, May 6, May 17, May 24, and May 31, in 

2002, were chosen as the dates in the sequence of observations covering the key 

growth stages of winter wheat. All of the information were obtained from the above 

experiments, including meteorological data, soil data, management data, time series 

remote sensing data of winter wheat, and so on. Meteorological data such as daily 

solar radiation, maximum air temperature and minimum air temperature, and pre

cipitation were recorded by observation equipment at the DAVIS meteorological 

site in the Xiaotangshan National Experiment Station for Precision Agriculture in 

Changping district, Beijing. Soil data, such as soil moisture and soil nutrients, were 

recorded in the experiments. Moisture content values of soil layers (5, 20, 40, 60, 

80, and 100 cm) were determined by the oven drying method. Management data 

were recorded during the experiments, including information on seeding, fertil

izing, irrigation, and other practices. In addition, the sequential canopy spectral 

reflectance and LAI of winter wheat were obtained with an ASD FieldSpec Pro FR 

(350–2500 nm) spectrometer (ASD, USA) and the SLW method, respectively. Actual 

observed data provide statistical properties of crop LAI, whereas crop simulation 

models provide physical properties of LAI within the whole crop growth period. 
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3.2.2.2 Methods 
There are two types of physical models used in this section, the crop growth model 

CERES-Wheat and the canopy radiative transfer model PROSAIL. CERES-Wheat 

was used to simulate the growth status of winter wheat in different stages daily and 

continuously. With canopy physiological and biochemical parameters, soil param

eters as input information, and canopy reflectance as output information, PROSAIL 

served to calculate vegetation canopy reflectance under various biochemical levels 

and different observation conditions. 

On the basis of the existing research, a data assimilation algorithm based on 

EnKF algorithms was proposed. This algorithm was designed to make full use of 

sequential remote sensing observations and the crop growth model CERES-Wheat 

in an effort to realize the high estimation precision of LAI. The conceptions and 

assimilation strategies of EnKF are described in detail as follows. EnKF is a sequen

tial assimilation method combined with ensemble forecasting and Kalman filtering. 

The assimilation scheme is shown in Figure 3.11. 

(1) Initialization of background field. The initial background field dataset Xa(t0) 

obeying Gaussian distribution and its error covariance matrix Pa(t0) of the state vari

able LAI is determined by remote sensed observations and the crop growth model 

CERES-Wheat. (2) Ensemble forecasting. At the k + 1 moment, the forecasted 

dataset Xf(tk+1) and its error covariance matrix Pf(tk+1) are calculated according to 

Equation 3.3. (3) Analyzing. The gain factor K(tk+1) of the k + 1 moment is calcu

lated according to Equation 3.3. (4) Updating. At the k + 1 moment, the analysis field 

Assimilated LAI 

Crop growth model 
CERES-Wheat 

Minimize the 
difference 
between 

observed NDVI and 
estimated NDVI 
based on EnKF 

algorithm at every
obseved time 

Observed NDVI 

Estimated NDVI 

Spectrometers, satellites … (NDVI was 
calculated based on hyperspectral data or multispectral data) … 

Canopy radiative transfer model PROSAIL 
LAI 

Crop growth model CERES-Wheat 

FIGURE 3.11  Data assimilation mode integrating observations with the CERES-Wheat 

model for LAI estimation based on the EnKF algorithm. (From Dong, Y.Y. et  al. 2012. 

Advances in Intelligent and Soft Computing, 165:831–837. With permission.) 
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a adataset X (tk+1) and its error covariance matrix P (tk+1) are calculated according to 

Equation 3.3. If there are still observations, the algorithm will move on to the next 

moment and return to ensemble forecasting. Otherwise, the assimilation process will 

be ended and X a (tk+1) will be taken as the optimal state variable. 

X tf ( ) X a 
k+1 = Mk (t k ) + Wk ; Wk ∼ N(0,Q  ); P f

k ( tk+1 )

(X tf ( f f f T

= k+1 ) − X t( k+1 )))(X t( k+1 ) − X t( k+1))
;

N − 1 

K(t ) = f ( T P tf 
k+1 P tk+1 )H ( H ( k+1 ) H  T + RR t  ( )k )−1;

X a (t )  f 
k+1 = X t( k+1 ) + K(t ) 0 

k+1 (Y (t k+1 ) − HX tf ( a 
k+1 )); P ((t k+1) (3.3) 

(X ta ( ) − X ta ( a a
k+1 k+1 ))(X t( k+1 ) − X t( k+1))T

= 
N − 1   

Regions with poor growth of wheat tend to have high sugar, low nitrogen, and 

low chlorophyll, whereas regions with good growth of wheat have low sugar, high 

nitrogen, and high chlorophyll. In Equation 3.3, N is the size of the dataset, M is 
athe CERES-Wheat model operator, and H is the PROSAIL model operator. X (tk) 

is the analysis field dataset at moment k. X a (t ) and X f (t ) are the mean valuesk+1 k+1

of the analysis field dataset and the forecasted dataset at moment k + 1, respectively. 

Y0(tk+1) is the observed dataset at moment k + 1, and Qk is the model error. N(0,Qk) 

is the Gaussian white noise dataset, and R(tk) is the observation error covariance 

matrix. The EnKF algorithm scheme is effective in solving the nonlinear problems 

involved in model operation and observation by the operator. 

In order to validate the feasibility and effectiveness of the data assimilation 

algorithm, a comparative study was made between the EnKF algorithm and the 

CERES-Wheat model. In the comparison experiments, the RMSE, coefficient of 

determination (R2), and accuracy were selected to analyze the precision of estimates. 

3.2.2.3 Results and Analysis 
In the numerical experiments, sequential remote sensed observations are taken 

as input parameters of CERES-Wheat. The initial background field and its error 

covariance matrix of the state variables are calculated according to the EnKF assim

ilation strategy, and the model error is set as Qk = 3% × y(tk) on the basis of given 

experience. Results of the EnKF assimilation experiments are shown in Figures 3.12 

and 3.13. 

In comparing the EnKF assimilations with the CERES-Wheat simulations, the 

three model testing indicators RMSE, R2, and accuracy had values of 0.84, 0.87, and 

0.42; 0.38, 0.92, and 1.05, respectively. In the whole EnKF assimilation process, the 

model simulations were effectively constrained by the observations. Confirmatory 

analysis showed that the EnKF-assimilated LAI not only agrees with the actual 

observations and the crop growth disciplines, but also reaches higher estimation 

precision. 

For winter wheat, the NDVI became saturated when the LAI of crop canopies 

was greater than or equal to 3.00. The dataset of LAI was subsequently divided into 
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FIGURE 3.12  Estimation results of EnKF assimilation algorithms. (From Dong, Y.Y. et al. 

2012.  Advances in Intelligent and Soft Computing, 165:831–837. With permission.) 

two categories: one subset included LAI values less than 3.00, and the other included 

LAI values greater than or equal to 3.00. Figure 3.13 shows that, for LAI ≤3.00, the 

EnKF-assimilated LAI is better than that of the CERES-Wheat simulations, but for 

LAI ≥3.00, these two methods show no improvement in LAI estimation. 

In order to solve the existing problem of unsatisfactory and low-efficiency LAI 

assimilation, the data algorithm, the sequential remote sensed observations, and the 

crop growth model simulations were comprehensively utilized to enhance the preci

sion of LAI assimilation. 
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FIGURE 3.13 Scatter plots of observed LAI and EnKF-assimilated LAI. (From Dong, Y.Y. 

et al. 2012. Advances in Intelligent and Soft Computing, 165:831–837. With permission.) 
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In the assimilation process, the LAI dynamic changing information was provided 

by sequential observations, and the LAI changing tendency was constrained by 

the CERES-Wheat simulations; all of these results were in accordance with actual 

observations and crop growth principles. Theoretical analysis and numerical experi

ments proved that the data assimilation scheme based on the EnKF algorithm effec

tively improves the estimation of crop LAI values. 

3.2.3 CROP WATER ESTIMATION  AND INVERSION  THROUGH REMOTE SENSING 

In this section, regression models that are based on gray relational analysis–partial 

least squares (GRA–PLS), the optimal band ratio normalized difference, and three 

bands algorithms were developed and tested for winter wheat LWC estimation (Jin 

et al., 2013). 

3.2.3.1 Experiment and Data Collection 
The experiment site is located in Tongzhou District (39°36′–40°2′N, 116°32′– 

116°56′E) and Shunyi District (40°0′–40°18′ N, 116°28′–116°58′E) of the Beijing 

suburbs, China. Four local wheat cultivars, Nongda 195, Jingdong 13, Zhongyou 206, 

and Jing 9428, were planted from September 25 to 30, 2007 and from September 28 

to October 2, 2008 at seeding rates of 190–225 kg ha−1 in 2007 and 215–265 kg ha−1 

in 2008. Spectral measurements were performed at the following growth stages (the 

first date is from 2008, the second date is from 2009): jointing (15 April, 13 April), 

heading (29 April, 30 April), and anthesis (15 May, 18 May) of winter wheat. All 

canopy spectral measurements were taken using the ASD Field Spec Pro spectrom

eter (analytical spectral devices) mounted on a tripod boom and held in a nadir ori

entation 1.3 m above the canopy. Vegetation radiance measurements were taken by 

averaging 16 scans at an optimized integration time, with a dark current correction 

at every spectral measurement. A panel radiance measurement was taken before and 

after the vegetation measurement by two scans each time. 

After the spectral positions of the biomass were collected, the aboveground bio

mass was sampled destructively. In each plot, average-looking plants were selected 

for sampling, and then 60 × 60-cm biomass sections from the scanned plants were cut 

at ground level. Collected plant samples were placed in a paper bag, sealed in a plastic 

bag, and placed in a cool, dark container to avoid as much water loss as possible. Upon 

returning from the field, leaves and stems were separated and weighed. All plant sam

ples were then oven dried for 48–72 h at 85°C to constant mass, which was recorded 

(Woods et al., 1982; Zhang et al., 2012). LWC was calculated as Equation 3.2. 

3.2.3.2  Methods and Analysis 
Based on the published literature, 10 spectral parameters that better elucidate the 

relationship between LWC and WVIs (Table 3.8) were used. Linear and nonlinear 

regression analysis was conducted, with the selected spectral parameters serving as 

independent variables. The results indicated that relationships between LWC and 

all spectral parameters were significant with the exception of the water index (1300, 

1450) and the normalized difference infrared index. The water index (1148, 1088), 

water index (1300, 1450), and vegetation dry index (VDI) were negatively correlated 



  

 

 

 

    

  

  

  

    

    

    

    

    

    

Spectral Parameters Wavebandsa Reference 

Water index (900,970) R900/R970 Penuelas et al. (1993) 

Water index (1148,1088) R1148/R1088 Schlerf et al. (2003) 

Water index (1100,1200) R1100/R1200 Jin et al. (2013) 

Water index (1300,1450) R1300/R1450 Seeliga et al. (2008) 

Water index (1300,1200) R1300/R1200 This study 

Normalized difference water Ustin et al. (2002)(R1070 − R1200)/(R1070 + R1200) 

index–hyperion 

Vegetation dry index (R970 − R900)/(R970 − R900) Penuelas et al. (1993) 

Normalized difference infrared index Hunt and Rock (1989)(R850 − R1650)/(R850 + R1650) 

Normalized difference matter index Wang et al. (2011) (R1649 − R1722)/(R1649 + R1722) 

Normalized heading index Pimstein et al. (2009)([R1100 − R1200]/[R1100 + R1200])/ 

([R850 − R670]/[R850 + R670]) 
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TABLE 3.8 
Summary of Selected Vegetation Indices, Wavebands, and References for 
Leaf Water Content 

Source: Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission. 
a Ri denotes reflectance at band i (nm). 

with LWC; the respective correlation coefficients (r) were −0.32, −0.14, and −0.23. 

The remaining parameters were positively correlated with LWC. The water index 

(1300, 1200) had the highest r value of 0.56 and an R2 value of 0.32. The following 

parameters were significantly correlated with LWC. 

The highly correlated area was located in the range of 1500- to 1750-nm wave

lengths, occurring mainly in the water absorption wavelengths (R2 > 0.35). The 

selected band ratio (R1723/R1535) performed better than did the empirical model based 

on reflectance spectra for the band ratio, with an R2 value of 0.39. 

A similar correlation analysis was applied to aggregated datasets with band-nor

malized difference indices. The highly correlated area was located in the narrow 

spectral region of 1600–1750 nm (R2 > 0.35). The most sensitive band normalized 

difference was utilized to establish the LWC estimation model. Of all the water 

index combinations, the best normalized difference water index was (R1720 − R1530)/ 

(R1723 + R1530), with an R2 of 0.37. 

3.2.3.3 Results 
The three-band algorithm was similar to the band ratio algorithm; the best three-

band water index was (R973 − R1720)/R1447, with an R2 value of 0.60 and RMSE of 

13.15% (Figure 3.14). 

The final selected spectral parameters included water index (900, 970), water 

index (1148, 1088), water index (1100, 1200), water index (1070, 1200), water index 

(1300, 1200), NDWI–Hyperion, 1650, 1722, and 970 nm (Table 3.9). 

These results suggested that the relationship between the nine water spectral vari

ables and LWC were relatively stable and the influences of experimental conditions 
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FIGURE 3.14  Nonlinear regression of leaf water content (LWC) against the optimal 

three-band algorithm. (From Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With 

permission.) 

were relatively small; so the model established in this study could be used to estimate 

LWC in winter wheat from 2008 data (n = 90). The regression equation was 

y = – .  10 354 (R 900 /R 970 ) + 7.089(R 1148 /R 1088 ) +
12 524(. R 1100 /R 1200 ) ) + 16 624. (R 1300 /R 1200 )

– .  13 306 [(R1070 – R1200 ) / (R1070 + R1200 )] ++ 1 032(. R1070 / R 1200 ) + (3.4)

4 364 . R + 5 632. R – 1 434. R + 10 45. 44
 1650 1722 970  

with an R2 value of 0.74. To validate the model, the predicted values using the GRA– 

PLS model were compared with the actual values acquired during the entire growth 

TABLE 3.9 
Spectral Variables for the Gray Relational Analysis–Partial Least 
Squares Model Implementation at All Growth Stages (n = 90) 

Evaluation Index Gray Correlation (ξ = 0.5) Orders 

Normalized difference water 0.9599 2 

index–Hyperion 

Water index (900,970) 0.9404 3 

Water index (1148,1088) 0.9201 4 

Water index (1100,1200) 0.9004 5 

Water index (1070,1200) 0.8981 6 

Water index (1300,1200) 0.9781 1 

1650 nm 0.8920 7 

1722 nm 0.8902 8 

970 nm 0.8870 9 

Source: Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission. 
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FIGURE 3.15  The relationship between the leaf water content (LWC) predicted by gray rela

tional analysis–partial least squares and actual LWC (left) and landsat thematic mapper image  

data (right). (From Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission.) 

season of 2009 (n = 72). Our results showed good correlations between predicted and 

actual values, with an RMSE of 9.82% (Figure 3.15). 

3.2.3.4 Model  Application 
NIR (760–900 nm) and short-wave near-infrared (SWIR) bands (1550–1750 nm) of 

landsat thematic mapper (TM) data were used to test the potential of the GRA–PLS 

models in the discrete spectral bands of contemporary spaceborne sensors. Because 

of the absence of water bands (e.g., 970–1300 nm) in Landsat TM data, the GRA– 

PLS regression equation was simplified to 

y = 30 563 . (NIR/SWIR) + 10 245 .  (NIR − SWIR )/ (  NIR + SWIR )
(3.5) 

− 0 462 . NIR + 0.8843 SWIR + 17 454 .
  

with an R2 value of 0.65. The measured value was consistent with the predicted value 

from the Landsat TM data, with an RMSE of 11.62%. The results indicated that 

GRA–PLS could be used to improve the estimation accuracy of winter wheat LWC 

by using Landsat TM data. 

3.3 PRESCRIPTIONS FOR PRECISION MANAGEMENT 

As mentioned above, the precision agriculture experiments can generate a large 

amount of farmland data. These data need to be managed, analyzed, and processed, 

and can be used to generate prescription maps for decision making. The generation 

of a prescription map and the decision-making process not only involves graphic 

processing and calculation but also includes the representation and inference of 
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experience and knowledge. Determining how to apply information technology to 

support variable-rate operations is an important task in precision agriculture. 

The data sources for precision agriculture include antecedent data and real-time data. 

Antecedent data are divided into yield data and soil nutrition data over years. Real-time 

data consist of airborne and spaceborne remote sensing data (for the inversion of chloro

phyll and LAI) as well as data reflecting plants’ growth status (by SPAD reading, LAI). 

This chapter first analyzes the procedures for supporting decision making in 

precision agriculture management and for prescription generation. Then, based on 

recent studies and progresses in precision agriculture, we introduce several theoreti

cal and methodological studies about decision making for management zone (MZ) 

partitioning and variable-rate operations. 

3.3.1 PROCEDURES  IN DECISION MAKING  AND PRESCRIPTION GENERATION 

It is known that the whole process from sowing to harvest is influenced by vari

ous factors, including climate, soil, the biosphere, and cultivation. To generate a 

prescription for precision agriculture management, it is necessary to obtain farm

land environmental information and utilize GIS, artificial intelligence technology, 

and simulation modeling (Figure 3.16). GIS can be used to create different graphic 

layers. The relationship between crop yield and the attributes from other layers is 

analyzed (including soil type, soil fertility, weed population, field irrigation, and 

drainage). Based on the analysis of yield potential of each prescription unit, the 

FIGURE 3.16 (See color insert.) Key links in decision making for precision agriculture 

management and prescription generation. (From Chen, L.P. et al. 2002. Transactions of the 
CSAE, 18(2):1145–1148. With permission.) 
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decision scheme for production management can be developed with the model. The 

prescription map is generated to provide guidance for decision making using intelli

gent precision agriculture equipment, which thus optimized the inputs of fertilizers, 

water, and pesticides from the economic and ecological perspectives (Chen, 2002). 

The first is a scheme for variable-rate fertilization (Larscheid, 1997), which is the 

easiest approach to decision making. Based on the principle of nutritional  balance, yield 

maps are used to calculate the theoretical amount of nutrients taken from the soil by 

crops in the current season. The input amount in the following  season should equal the 

amount being consumed. This fertilization method is known as “supplementary fertil

ization.” Owing to the leaching loss of nutrients, additional fertilization may be required 

(i.e., an additional 10%). This method assumes a  constant yield restricting factor for the 

two growth seasons, which is based on the yield information for 1 year and a model of 

fertilizer supplementation. However, such a method requires less supporting informa

tion, and the prescription maps can be easily generated by software. Therefore, this 

method can serve as a good start for formulating the scheme for variable-rate operations. 

The second approach to variable-rate fertilization decision making uses a series 

of yield maps over multiple years. According to the yield data from multiple years 

of a plot, the spatial distribution map of yield and the interannual variation map of 

yield can be obtained. Using these two types of maps, separate regions having stable 

high yield, stable low yield, and unstable low yield can be identified. Hence, a clas

sified management map can be generated. Based on this map, decisions on the input 

amount of fertilization in the next season can be made (Larscheid, 1997). 

This second method requires yield data from multiple years, which thus provide 

a more reliable foundation for decision making, despite making the analysis more 

complicated. It is highly risky to make decisions based on a yield map from only 

1  year, since many spatial and temporal factors are still unknown. By using the 

yield data of 3 or 4 years, the effect of temporal and spatial factors can be mitigated. 

Accordingly, targeted investigations of certain areas can be performed to analyze 

the factors restricting yield. The economic benefit principle is to adopt remedial 

measures for dealing with the impacts of specific restricting factors, or to manage 

the plot according to its potential. 

The decision-making results for variable-rate fertilization should be represented in 

the form of a prescription map to guide the agricultural machine for  implementation 

of variable-rate fertilization. The generation of a prescription map includes several 

steps: determining the size of units of the prescription map, converting the format, and 

developing the coordinate system. The size of the units of a prescription map can be 

determined by the operation width of the agricultural machine. To facilitate the opera

tion, it can be set to integer multiples of the width. Considering the limited sensitivity of 

variable-rate fertilization machines and the wear problem of machines, adjacent regions 

with similar results can be merged. The study about the scale effect in variable-rate 

fertilization showed that decrease of the unit plot size might cause an increase of fertil

ization amount. When determining the size of the unit plot for fertilization, the standard 

of soil nutrition, variation, and spatial  autocorrelation  levels should also be considered. 

Different variable-rate fertilizer applicators have different requirements for the format 

of prescription maps (e.g., vector or raster data). Since the results of models are almost 

always in raster format, a format conversion is necessary if a vector format is required by 
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the machine. Since GPS is usually used for navigation, the coordinate system of the pre

scription map should be WGS-84 coordinates, which may require coordinate conversion. 

3.3.1.1 Generation of the Soil Nutrition Map 

3.3.1.1.1 Experiment and Data Collection 
The automatic soil collection experiment was carried out on June 2007 at 

Xiaotangshan National Experiment Station for Precision Agriculture. The entire plot 

was divided into 20 × 20 m grids for sampling, with 950 sampling points arranged, 

using DGPS for the determination of sampling points. The ploughed layer was sam

pled at a depth of 0–20 cm, which is most closely related to crop growth. At each 

sampling point, soil drilling was performed on four points on a concentric circle with 

a diameter of 10 m and at the center of the circle. The soil samples were air dried 

within 24 h after sampling, and then sieved for nutrition determination. Indicators of 

TN, organic matter (OM), available phosphorus (AP), and available potassium were 

measured (Cui et al., 2013). 

3.3.1.1.2 Methods and Analysis 
3.3.1.1.2.1 Spatial Structure Analysis of Soil Nutrition Using geostatistical prin

ciples, semivariance analysis was carried out on soil nutrition in 2007. The optimal 

model for each nutrient was obtained; the model parameters are shown in Table 3.10. 

For model validation, cross validation was performed. Root-mean-square standard

ized (RMSS) was used as an indicator of goodness-of-fit. The closer the RMSS value 

to 1, the better the goodness-of-fit. 

3.3.1.1.2.2  Soil Nutrition Interpolation Based on the optimal semivariance 

model of soil nutrition, Kriging interpolation was employed to estimate the unmea

sured data points and the map was plotted. Hence, a spatial variation map of the 

content of each nutrient in the open field was generated (Figure 3.17). In 2007, AP 

was higher in the south and northeast corner, with a gradual decrease toward the 

middle area. The content of AP was lower in the western area. The northeastern 

TABLE 3.10 
Spatial Feature Values of Soil Properties 

Sill Value Nugget Co/(Co + C) 
Soil Properties Model (Co + C) Value (Co) Range (m) (%) RMSS 

Available phosphorus Gaussian 23.6053 6.8053 830.4 28.83 1.0320 

(mg kg−1) 

Available potassium Gaussian 170.8587 77.8400 393.0 45.56 0.9392 

(mg kg−1) 

Total nitrogen (%) Gaussian 0.0001 0.00003 608.4 28.33 0.9880 

Organic matter (%) Gaussian 0.03815 0.010811 560.2 28.34 0.9984 

Source: Cui, B. et al. 2013. Scientia Agricultura Sinica, 46(12):2471–2482. With permission. 
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FIGURE 3.17  Kriging interpolation analysis of soil nutrition. (From Cui, B. et  al. 2013. 

Scientia Agricultura Sinica, 46(12):2471–2482. With permission.) 

and southwestern areas had higher content of available potassium, with a decrease 

toward the middle area. TN had a similar spatial distribution pattern in the whole 

research area to OM. The areas high in TN were mainly in the northeast corner and 

in the south, with a gradual decrease toward the middle area. OM content was higher 

in the south and in the northeast, with a gradual decrease toward the middle area. 

3.3.1.2 Generation of Crop Yield Distribution with a Combine Harvester 
Crop yield is the result of agricultural production, and it serves as a reference for 

agricultural production decision making for the next year. Obtaining crop yield 

information for the plot and plotting the spatial distribution map of yield are the 

starting points of precision agriculture, and also the basis for reasonable input and 

for formulating management decisions. Accuracy of the yield map is closely related 

to the accuracy of the decision variable. 

3.3.1.2.1 Experiments and Data Collection 
A CASE IH 2366 combine harvester equipped with an AFS yield monitoring system 

was used to acquire the yield data for wheat at Xiaotangshan National Experiment 

Station for Precision Agriculture in June 2001 and 2002. In addressing the errors 

of yield data, yield information and records of harvest processes were utilized. The 

statistical characteristics and spatial distribution of yield data points were combined 

to identify and remove abnormal velocity data and yield fluctuations. 

3.3.1.2.2 Comparison of Spatial Distribution Characteristics 
The semivariance of spatial distribution of yield for 2001 and 2002 was calculated. 

Fitting was done with a spherical surface model, and parameters of the semivariance 

model were obtained (Table 3.11). 
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TABLE 3.11 
Parameters of the Semivariance Model with Yield Data for 2 Years 
(Spherical Surface Model) 

Year Nugget Sill N/S Range R2 

2001 365802.30 543654.2 67.29% 28.163 0.9111 

2002 265950.40 551857 48.19% 23.838 0.9871 

Source:	 Chen, L.P. 2003. Theoretical and Experimental Studies on Variable-Rate Fertilization in 
Precision Farming. Doctorate dissertation of China Agriculture University. With 

permission. 

Kriging interpolation was performed over the filtered yield data for 2001 and 

2002. The spatial distribution map (Figure 3.18) was generated with large variations 

in spatial distribution of yield. In the left figure (2001), the yields of plots A, B, and D 

were higher, and the variation was higher. The yields of plots F and G were lower and 

the variation was smaller. In the right figure (2002), yield showed a different spatial 

distribution pattern compared with 2001, especially for plots F and G. 

3.3.1.3 Generation of a Yield Map Based on Remote Sensing 
Crop yield data can be sampled and weighted in field. The essence of modeling yield 

per unit area is to treat remote sensing data as an input variable, so as to directly 

or indirectly represent the factors or parameters influencing the growth and yield 

of crops. The statistical model of the spectral index of yield is commonly used for 

Yield kg/ha 
G 

F 

752.91–1795.32 
1795.32–2424.20 

D E 2424.20–2803.71 
H 2803.71–3032.72 

3032.72–3170.92 
B 3170.92–3399.93 

C 3399.93–3779.43 
3779.43–4408.32 

A 
4408.32–5450.45 
5450.45–7456.78 

FIGURE 3.18 Spatial distribution maps of yield in each plot using filtered data. (Note: 

the left and right images are the yield maps of the same plot in 2001 and 2002, respec

tively.) (From Chen, L.P. 2003. Theoretical and Experimental Studies on Variable-Rate 
Fertilization in Precision Farming. Doctorate dissertation of China Agriculture University. 

With permission.) 
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yield estimation based on remote sensing technology. The relevant experiments are 

designed as follows (Song et al., 2004). 

3.3.1.3.1	 Experiment and Data Collection 
The experiment was conducted at the China National Experimental Station for 

Precision Agriculture in 2002. Three winter wheat cultivars, Jingdong 8, Jing 9428, 

and Zhongyou 9507 were planted in 48 small plots with areas of 30 × 32.4 m2. Wheat 

yield data were collected manually during the harvest season, within a sampling area 

of 5 × 5 m. In 2002, a push-broom hyperspectral image (PHI) sensor carried by a 

Yun-5 aircraft acquired data in three flights (April 18, May 17, and May 3). The 

height was 1000 m, and the ground resolution of subsatellite points was about 1 m. 

The actual after-harvest yields were collected on a grid of 5 × 5 m in 48 subareas. 

Three PHI images of April 18, May 17, and May 3 were collected. 

3.3.1.3.2	 Construction of the Yield Estimation Model 
Using Remote Sensing Technology 

NDVI and PRI are two widely used vegetation indices that are sensitive to crop 

growth conditions. Furthermore, in order to seek the widest variance parameters 

in the scene, principal components analysis (PCA) transformation and minimum 

noise fractionation (MNF) transformation are used for all spectrum bands and the 

first five components are kept for analysis. The transformation produces a new set of 

compound indices, each made of a linear combination of the original spectrum. The 

correlation coefficients reached 0.62 for PC1 and yield, −0.77 for yield and PC2, and 

0.87 for NDVI and yield. Then, yield prediction models in three growth stages were 

established and shown as follows (Equations 3.6 through 3.8): 

Wheat yield = 23 .023 * PHI _ PC1 + 2422 . 4 R2 

(3.6) = 0.386 (date : 4/18/2 00  2) 
  

Wheat yield = 4735 . *  7 PHI _ NDVI + 215 . 69 R2 

(3.7) = 0.524 ( date : 5/17/2 00  2) 
  

Wheat yield = 4156 . *  8 PHI _ NDVI + 1700.3R2

(3.8) = 0.756 ( date : 5/31/2 00  2) 
  

3.3.1.3.3	 Results of Yield Estimation Based on Remote 
Sensing and Actual Yield Measurement 

Based on the three wheat yield models, within-field yield variability was mapped for 

the entire field (Figure 3.19a–c). 

All three models were validated by the combine harvest yield data. Statistical 

analysis showed that R2 values of three models are 0.112, 0.108, and 0.129, corre

sponding to correlation coefficients of 0.335, 0.328, and 0.360. This study demon

strated the potential of using hyperspectral airborne remote sensing in the visible 

and NIR regions to predict winter wheat yield. 
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(a) (b) (c) (d) 

Yield/kg/ha 
>4200 
3200–4200 
1900–3200 
<1900 

FIGURE 3.19 Wheat yield estimation maps based on PHI hyperspectral data (image dates 

from a to c are April 18, May 17, and May 31, 2002, respectively; image d is a vector yield 

data map obtained from combine harvester data). (a) The yield map estimated by PHI image 

collected in April 18, 2002; (b, c) the yield maps estimated by PHI images collected in May 

17, 2002, and May 31, 2002, respectively; (d) the yield data map obtained from combine 

harvester. (From Song, X.Y. et al. 2004. IGARSS ‘04. Proceedings 2004 IEEE International, 
6:4080–4083. With permission.) 

3.3.2 METHOD  FOR GENERATING MANAGEMENT ZONES 

3.3.2.1	   Extraction of Precision Agriculture Management  
Zone Based on Multiyear Yield Data 

Two yield data processing software programs Yield Editor and Yield Check were 

employed for error treatment of yield data from 2001 to 2004. Given the variation in 

wheat varieties and abnormal factors (such as natural disasters), the wheat yield for 

the same plot may vary across the years. To remove interannual differences, the yield 

data for each point were normalized by dividing the measured value by the mean 

value (Chen, 2003). For the sake of partitioning, ordinary Kriging was employed to 

interpolate the yield data points in vector form on the surface of the grid. Ordinary 

Kriging interpolation consists of three steps, including calculation of the semivari

ance of samples, establishment of the semivariance model, and spatial interpolation 

(Isaaks and Srivastava, 1989). For the calculation of the semivariance of samples, 

the minimum step length should be equal or close to the average sampling interval. 

This is recommended for obtaining reasonable semivariance. During the Kriging 

interpolation, the number of sampling points for single-point interpolation should be 

restricted to 10–20. Since the distance between the two sampling points in the direc

tion of combine harvester movement is usually smaller than 4 m, the size of output 

pixels should be selected as 4 × 4 m during interpolation. 

3.3.2.1.1 Generation of Management Zones 
After a series of treatments (error treatment, normalization, and spatial interpola

tion), the 4-year yield data were then subjected to a grid averaging operation, so as to 

obtain a synthetic yield grid map. In order to remove the isolated pixels or fragments 

from the partition map, square filtering windows with scales of 12, 20, 28, 36, 44, 52, 
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and 60 m (equivalent to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, and 15 × 15 pixels) 

were used for mode filtering on the partition image with 4-m resolution. To further 

analyze the changes in partitions after filtering, statistical analysis was carried out 

on various indicators (intraplot variance, coefficient of variation, mean, spatial con

sistency, and fragmentation degree) of the partition image (4, 12, 20, 28, 36, 44, 52, 

and 60 m). With comprehensive consideration of the indicators, a proper threshold 

was selected to generate the optimal partition map. 

3.3.2.1.2 Analysis of Results 
3.3.2.1.2.1 Changes in the Reduction Rate of Variance The smaller the varia

tion within the partition, the more convenient it is to implement uniform manage

ment measures within the partition. The greater the variation reduction rate, the 

better. As the number of partitions increases, the variation reduction rates at vari

ous scales tend to be consistent, all showing a gradual increasing trend. When the 

number of partitions increases to four, the variance reduction rate remains basically 

unchanged in spite of further increases in the number of partitions. This indicates 

that it is useless to divide the plot into more than four partitions. The appropriate 

number of partitions is four. For the same number of partitions, as the scale of the 

filtering window increases, the variance reduction rate gradually decreases, which 

is unfavorable for precision agriculture management. Hence, it is necessary to adopt 

other methods to determine the appropriate scale of the filtering window. 

3.3.2.1.2.2 Significant Changes in Lag Differences When the number of parti

tions is four, the variance reduction rate decreases as the scale of the filtering window 

increases. This means that the intraplot variance gradually increases after filtering. 

As the scale continues to increase, the F value decreases. When the scale is 4–44 m, 

there is a significant difference between the partitions. At the scale of 4–28 m, the dif

ference between partitions is highly significant. When the scale is further increased to 

52 and 60 m, the difference within the plot is no longer significant. Multicomparison 

between the partitions indicates that when the scale is 4–44 m, there is a highly sig

nificant difference among the four partitions at various scales. This indicates that the 

scale of the filtering window should be no greater than 44 m. 

3.3.2.1.2.3 Changes in the Mean, Standard Deviation, and Coefficient of 
Variation As shown in Figure 3.20a, as the scale increases, the means of each 

partition remain unchanged (except that the mean of partition 1 with the lowest yield 

increases slightly). Accordingly, if the mean yield of each partition is used to calcu

late the fertilization amount, the fertilizer requirement of the partition before and 

after filtering does not change. However, the standard deviation and coefficient of 

variation increase at larger scales, as shown in Figure 3.20b and c. This indicates 

that it is undesirable to implement the same management scheme within the same 

plot. A more appropriate scale of filtering window must be selected. As the scale 

increases, the proportion of the area of each partition also varies (Figure 3.20d). 

3.3.2.1.2.4 Changes in Fragmentation Degree of the Partition Map The land

scape structure index quantitatively and intuitively reflects the differences between 
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FIGURE 3.20  (See color insert.) Changes in the mean, standard deviation, coefficient  

of variation, and proportion of area with scale for each partition. (a) Illustrates mean value  

changes with scale increasing for each partition; (b) illustrates standard deviation value  

changes with scale increasing for each partition; (c) illustrates coefficient of variation  

value changes with scale increasing for each partition; (d) illustrates area proportion (%)  

changes with scale increasing for each partition. (From Li, X. 2005. Research of Precision  
Agriculture Management Zone Generating Methods Based on ‘3S’ Technique. Doctorate  

dissertation of Beijing Normal University. With permission.) 

partition maps at different window scales. As the scale increases, the patch density 

(PD) gradually decreases logarithmically. As shown in Figure 3.21a, the smaller 

the PD, the smaller the fragmentation degree of the partition will be, and hence the 

smaller the error of the decision variable with the partition as a unit. This is favorable 

for variable-rate operations in precision agriculture. The small patches are usually in 

isolated areas caused by the use of points with large deviations from adjacent points 

in terms of yield measurements for interpolation. Yield variation is induced by ran

dom causes, so the actual yield distribution pattern cannot be revealed. Moreover, 

small patch areas make it inconvenient to carry out  variable-rate operations. 

It is evident from Figure 3.21 that as the scale increases, the total core area 

increases logarithmically. As the scale of the filtering window increases, the patches 

with smaller areas are smoothed out, and PD decreases. As a result, the uncertain 
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FIGURE 3.21  Changes in the fragmentation index of the partition map with scale. (a) Patch  

density (PD), (b) total core area (TCA), (c) mean core area (MCA), and (d) aggregation index (AI).  

(From Li, X. 2005. Research of Precision Agriculture Management Zone Generating Methods  
Based on ‘3S’ Technique. Doctorate dissertation of Beijing Normal University. With permission.) 

area caused by the random yield variation decreases, and the core area increases. 

This is especially favorable for variable-rate operations in precision agriculture. The 

core area refers to the central part remaining after subtraction of the buffer zone 

with a designated margin width. In landscape ecology, this buffer zone is the transi

tion belt between two adjacent landscape elements, and it is called the ecotone. In 

precision agriculture, the core area is considered unstable because of errors in mea

surement and interpolation. Obviously, the larger the designated margin width, the 

smaller the core area will be. Here, the cutting width (6 m) during yield acquisition 

by the combine harvester is the margin width. The core area of a patch is the area 

with stable yield potential. The size of the core area is the basis to judge whether a 

patch can be used as a unit for the implementation of one management prescription. 

For example, if the area of a patch is large enough to differentiate it from the adja

cent patches, but the core area cannot meet the requirements of field operations (the 

diameter of core area is smaller than the cutting width), then the patch is not suitable 

for use as a decision-making unit and it has to be merged with adjacent patches. 

The mean patch area can be a criterion for choosing the optimal scale. As shown 

in Figure 3.21c, the mean core area increases linearly with increasing scale. When the 

scale is smaller than 20 m, the mean core area of the patch is smaller than 0.05 ha. A 

large number of small patches are caused by random yield variation across the years. 
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FIGURE 3.22  (See color insert.) Partition map after filtering with different scales of window.  

(From Li, X. 2005. Research of Precision Agriculture Management Zone Generating Methods  
Based on ‘3S’ Technique. Doctorate dissertation of Beijing Normal University. With permission.) 

They cannot accurately characterize the stable yield structure. However, when the 

spatial scale is 36 m, the mean core area of the patch increases to 0.16 ha, which is 

favorable for variable-rate operations. 

As shown in Figure 3.21, as the scale increases, the concentration degree of the 

partition map increases. That is to say, there are fewer fragments or isolated pixels 

on the partition map. This is a favorable trend for precision agriculture management. 

3.3.2.1.2.5 Changes in Spatial Consistency As shown in Figure 3.22, when the 

scale of the filtering window increases from 12 to 36 m, Kappa varies in the range 

of 0.54–0.87. The partition map after filtering shows good spatial consistency with 

the original partition map. After filtering, the partition map reflects the general yield 

distribution pattern. 

When the spatial scale is increased further, Kappa becomes smaller than 0.5. The 

partition map after filtering has poor consistency with the original partition map 

(4 m). This indicates that a filtering window of the proper size can effectively remove 

the random yield variation (small patches), and thus better reflect the spatial distribu

tion pattern of yield. However, if the scale is excessive, some real yield variation may 

be smoothed out as well, and a stable yield structure cannot be characterized. 

3.3.2.2	   Extraction of Management Zones Based on the 
Spatial Contiguous Clustering Algorithm 

Many data sources have been used for partitioning of precision agriculture regions 

(including elevation, slope, slope aspect, electric conductivity of soil, depth of top soil, 
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and yield). The existing methods are either monitoring-based or nonmonitoring-based 

classifications. However, only the attribute data of spatial units are considered during 

classification; the spatial distribution of units and the spatial dependence are neglected. 

As a result, there are many isolated units of fragments, making variable-rate operations 

inconvenient in precision agriculture. Based on the conventional K-mean algorithm, we 

introduce an approach involving the mutual dependence of positions of spatial units. 

The spatial contiguous K-means clustering algorithm (SC-KM) is proposed. High-

resolution images obtained with an OMIS at the Xiaotangshan National Experiment 

Station for Precision Agriculture were taken as the data source. The K-means and 

SC-KM algorithms were employed to extract the partitions based on the difference in 

growth status of wheat during periods with higher demand for fertilizer and water. The 

partitioning effects with the two algorithms were compared (Li, 2005). 

3.3.2.2.1 Overview of the Study Area and Data Sources 
The experiment was carried out at the Xiaotangshan National Experiment Station 

for Precision Agriculture. The planting area of winter wheat at the experimental 

base was about 39.2 ha. OMIS images were obtained by an airborne sensor on April 

26, 2001 (jointing stage). The OMIS system uses a linear sensor for imaging by 

optical mechanical scanning. The instantaneous field of view of the spectrometer 

was 3 mrad, and the total field of view was 70°. The visible/near-infrared, short- and 

medium-infrared, and thermal infrared bands (0.4–12.5 μm) were covered, includ

ing 128 spectral ranges. The visible/near-infrared region (0.46–1.1 μm) had 64 spec

tral ranges, with a spectral resolution of 10 nm. When the flight height was 1000 m, 

the resolution of subsatellite point was about 3 m. OMIS images showing the wheat 

plot with flat terrain and obvious variation in large field productivity were selected. 

This plot had an area of about 5 ha. 

3.3.2.2.2 Selection of Management Zone Parameters 
The NDVI is the most widely used index in remote sensing monitoring of crop 

growth. In this article, OMIS images after reflectance conversion were studied. Two 

ranges with central wavelengths of 789.2 and 675.8 nm were selected. 

Because of differences in fertility and management measures, different partitions 

of the plot may differ in terms of the growth status of wheat. The variation (variance) 

over the entire plot without partitioning is the intraplot variation with the partition 

number being 1. With this variance as a reference (100%), the relative variances at dif

ferent partition numbers were calculated. To select an appropriate partition number, it 

was necessary to determine a threshold for variance. When the partition number was 

five, the overall variance of the plot decreased to about 10% of the original. As the 

partition number increased further, the relative changes in variance were no longer 

significant. For this reason, a partition number of five was considered appropriate. 

As shown in Figure 3.23, the aggregation with the SC-KM algorithm for each 

plot is consistently higher than with the K-M algorithm. There is less fragmentation 

than with the latter algorithm. This indicates that the SC-KM algorithm can greatly 

improve the aggregation and continuity of each plot by considering the spatial asso

ciation of pixels. For these reasons, the SC-KM algorithm is suitable for open-field 

variable-rate operations. 
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FIGURE 3.23 (See color insert.) (a) Partitioning results of the K-M algorithm. (b) 

Partitioning results of the SC-KM algorithm. (From Li, X. 2005. Research of Precision 
Agriculture Management Zone Generating Methods Based on ‘3S’ Technique. Doctorate 

dissertation of Beijing Normal University. With permission.) 

3.3.2.3	   Delineation of Agricultural Management  
Zones with Remotely Sensed Data 

Remote sensing images can reflect the growth status of crops in real time, whereas 

the spectral reflectance of crops characterizes the growth status of crops. Moreover, 

the  growth status of crops is closely related to soil texture and soil nutrition. 

Hence, the monitoring of growth status and nutrition diagnosis of crops using remote 

sensing data and the partitioning of the plot are key components of variable-rate 

fertilization in modern precision agriculture. 

3.3.2.3.1	 Experiment and Data Collection 
A field experiment at the National Experimental Station for Precision Agriculture 

of China was designed during the 2005–2006 winter wheat growing season (Song 

et al., 2009). Soil samples were taken, and levels of five crop nutrients, TN, nitrate 

nitrogen [NN], AP, extractable potassium [EP], and OM, were determined using 

standard laboratory procedures. Meanwhile, one scene of Quickbird imagery dur

ing the heading stage of wheat was acquired and processed. Spectral parameters of 

OSAVI were extracted from the imagery. The winter wheat was sown on September 

29, 2005, with a row spacing of 15 cm. The wheat cultivar was Jingdong 8, which is 

one of the main winter wheat varieties in northern China. Base fertilizer was applied 

on September 27, 2005, and supplementary fertilizer was applied on April 22, 2006. 

A square plot (90 × 90 m) in the wheat field was selected as the soil sampling area. 

3.3.2.3.2	 Kriging of Crop Nutrients and Determining 
the Optimal Number of MZs 

The spatial structure of soil AP and EK on April 4 and OM on June 16 was evalu

ated by isotropic variogram models. The model types and their parameters were 

calculated and ordinary Kriging was applied to the three soil properties (AP, AK, 

and OM) and wheat yield (Figure 3.24). 

The OSAVI and Kriged values of soil AP, EK, OM, and wheat yield were analyzed 

with the fuzzy K-means algorithm. To determine the optimal number of classes, the 
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FIGURE 3.24 The spatial structure of soil AP, EK, and wheat yield was evaluated by iso

tropic variogram models. (From Song, X.Y. et al. 2009. Precision Agriculture, 10(6):471–487. 

With permission.) 

number of classes was increased by one at a time from two to six. To determine the 

optimal number of classes, the fuzziness performance index (FPI) and modified par

tition entropy (MPE) were used. It was shown that the FPI and MPE had the same 

change in trend with an increase in cluster number, and the minimum FPI and MPE 

values were obtained with three clusters for the study area. 

3.3.2.3.3 Management Zone Delineation and Evaluation 
Based on the optimal number of classes, three MZ maps were generated using dif

ferent data (e.g., soil, yield, and RS data). Figure 3.25 shows the resulting maps. The 

Kappa coefficient was then used to compare the homogeneity of the zones in the 

three different MZ maps. The results indicated that zones based on soil and yield 

(Figure 3.25a), and soil, yield, and RS data (Figure 3.25b) are the most similar; the 

Management zone 
Management zone 
Management zone 

Map based on Map based on RS data Map based on

soil and yield data soil yield and RS data
 

FIGURE 3.25 Maps of management zones generated by fuzzy K-means classification 

using different combinations of data (soil, yield, and OSAVI). (From Song, X.Y. et al. 2009. 

Precision Agriculture, 10(6):471–487. With permission.) 
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similarity between Figure 3.25a and c is the greatest with a Kappa coefficient of 

0.91. The Kappa coefficient based on comparison of the zones in Figure 3.25a and 

b was 0.16. 

The statistical analyses indicated significant differences between the crop nutri

ents and yield in each zone of the three maps. MZ 3 had the highest nutrient sta

tus and potential crop productivity, whereas MZ 1 had the lowest. The results also 

showed that the coefficients of variation (CVs) for wheat yield decreased in the three 

zones for all maps. 
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4 Control of Precision 
Agriculture Production 

Qin Zhang 

CONTENTS 

4.1 INTRODUCTION 

Precision agriculture (PA) is a farming management method that allows farmers to 

optimize their resource inputs to achieve their production potential in response to 

observed inter- and intrafield variability in soil properties and crop growth condi

tions. Motivated by the potential that PA technology can offer, farmers in the United 

States and other parts of the world have adopted it as a management strategy to bring 

data from multiple sources to assist decisions associated with crop production (Batte 

and Arnholt, 2003). However, owing to the biological and environmental complexity 

involved in crop production, farmers had difficulty incorporating their collected data 

into management practices to improve their production making them more profitable 

and sustainable. Many farmers now ask the question, “What do I do with the data?” 

after a few years of data collection (Carter, 2012). Such a shortcoming left a gap 

between the promises of PA technology and the tangible results the farmers have 

realized. 

Precision crop production normally includes a course of action from measuring 

soil properties, observing crop growth conditions, selecting adequate resource inputs 
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FIGURE 4.1  Representation of a typical PA system using a system block diagram. 

based on field variations, and performing the required actions to deliver the right 

amount of selected input to the right location at the right time. The relationship 

between these elements in a PA system can be represented using a block diagram 

(Figure 4.1). This block diagram shows that decisions for PA processes are made 

based on observed crop variability, and applying adequate resource or cultivation  

actions, which could improve crop growth and therefore realize yield potential. 

As represented by the block diagram, a PA process is very similar in format to 

the process of many industrial controls: it is concerned with understanding and con

trolling resource inputs in order to achieve a best possible return on inputs. Ideally, 

to control such a process effectively, gaining a comprehensive understanding of the 

responses of crop growth to resource inputs is required. However, the spatial and 

temporal variability of crop growth makes the task of “gaining a comprehensive 

understanding” very challenging. Such insufficient understanding originates from 

the transdisciplinary nature of implementing a precision crop production, as the 

understanding and controlling of such a production involves crop and soil sciences, 

engineering, and economics. Without finding a satisfactory solution to solve this 

problem, we will have to consider the control of a poorly understood system in preci

sion crop production. 

Gaining an understanding of responses of crop growth to resource inputs in a 

precision crop production process is similar to figuring out the dynamic behaviors of 

a system responding to corrections in control systems engineering. A typical control 

system uses sensors to monitor the performance and collect measured data of the per

formance of the system being controlled. Those measurements are then used to give 

feedback to the controller to make corrections, normally derived by mathematical 

modeling of the system, toward obtaining a desired performance. Similarly, preci

sion crop production processes also use sensors to collect relevant crop growth data, 

and use the collected data to support making resource input decisions with respect 

to the goal of optimizing returns on inputs. While similar in format, a precision crop 

production process does present some noticeable differences from a conventional 

control system, and the most significant one could be its spatial variability, that is, 

optimizing the resource inputs based on crop yield potential at different locations 

within a field that forms the basis of PA (Pierce and Nowak, 1999). To cope with 

spatial variability in field, an automatic data gathering and storing method (Schueller 

and Bae, 1987) has been invented allowing PA practitioners to overlay field topog

raphy, soil fertility, and crop yield data in the form of a georeference map. Another 

major difference from a conventional control system is the less systematic nature of 
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temporal crop data as it is subjected to numerous natural disturbances. The use of 

multiyear datasets could help to stabilize the temporal variability of PA data (Kaspar 

et al., 2003). 

The spatial and temporal variability of field data could result from a number of 

factors, from the agriculturally important climatic states (such as drought, flooding, 

hail, and other extreme weather), soil properties (such as texture, organic and inor

ganic matter, moisture content, electrical conductivity, pH, and nitrogen levels), to 

crop growth conditions (such as water, nitrogen, or disease stress). A PA production 

system aims at precisely applying adequate amounts of selected resources in terms 

of accurate agriculturally important information. 

One practical method of determining appropriate resource inputs in response to 

such field variability in the PA process is the control approach: measuring system 

parameters to determine the yield potential, controlling the resource inputs to reach 

the yield potential, and implementing a variable-rate application (VRA) to deliver 

the right amount of selected inputs precisely to target locations. This chapter will 

discuss the sensing, control, and implementation characteristics and solutions suit

able for precision crop production practices. 

4.2 SENSING FOR PRECISION AGRICULTURE 

As in any control system, sensing in a PA system plays an important role in gaining 

an understanding of crop growth responses to soil properties and resource inputs,  

and providing an indication of production outcome. However, the inherent spatial 

and temporal variability in the PA process is attributed to the fact that much of 

the collectable data are not directly observable, namely, some measured data are 

unable to provide a direct indication on production outcome (Zhang et al., 2013). 

This section will discuss the technologies and methods commonly used in spatial 

and temporal sensing, the information spatial and temporal data could bring in, and 

the challenge for making such data observable in controlling a precision crop pro

duction system. 

4.2.1 SPATIAL SENSING 

The measurement of the spatial variability of crop growth affected by soil properties 

within a field is one of the fundamental tasks in PA. Some of the soil properties, such 

as soil type, topography, past usage, and organic matter content, may be unchanged 

or have very little change over a considerably long period of time; thus, one mea

surement could provide such spatial variability information for years. In compari

son, the variability of some other soil properties, such as soil nitrogen and moisture 

content, could change rapidly and requires real-time or near-real-time measurement 

(Hummel et al., 1996). 

Defined as a mechanism for detecting a gradient in which the property is com

pared at different points within and/or between fields, spatial sensing is commonly 

used in PA for gathering such information. In terms of the methods for obtaining the 

data of interest, spatial sensing can be classified into categories of remote sensing 

and georeferenced sensing. 
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Remote sensing, a technology for detecting and measuring reflected and emitted 

electromagnetic radiation from a distance, was quickly adopted in PA in the 1980s, 

and initially focused on limited wavelengths in a few visible and near-infrared (NIR) 

bands and then expanded to a much broader range from ultraviolet to microwave, and 

with different spatial resolution using satellite, aerial, or ground vehicle-mounted 

sensors to meet different requirements for PA management (Mulla, 2013). There are 

two categories of electromagnetic radiation sensors, namely, nonimaging (e.g., spec

troradiometers) and imaging (e.g., spectrum cameras), available for PA applications. 

Spectroradiometers are devices designed to measure the spectral power distribution 

of a source often used in georeferenced sensing, and spectrum cameras are devices 

designed to acquire a spectrally resolved image of an object or scene often used in 

satellite-, aerial-, and ground vehicle-based remote sensing. 

A remotely acquired spectrally resolved image carries two forms of resolution: 

the spectral resolution and the spatial resolution, with the former solely determined 

by the sensor design and the latter able to be changed by the distance between the 

sensor and the scene. The spectral resolution is specified by the number of spectral 

bands in which the sensor can collect reflected radiance. Both the high-resolution 

hyperspectral camera (up to 220 bands) and the low-resolution multispectral cameras 

(as low as 3 bands) covering visible to NIR spectrum of reflected radiations are com

monly used in PA remote sensing. The spatial resolution is specified by the pixel size 

of spectral images covering the field surface. Constrained by current sensor technol

ogy, remotely sensed spectral images can only offer either a high spatial resolution 

associated with a low spectral resolution or vice versa. 

It is noted that in acquiring spectral images for PA use, the number of bands for 

a sensor is not the only important aspect of spectral resolution; the position of those 

bands in the electromagnetic spectrum is equally, if not more, important. For example, 

one widely used crop sensing method in PA application is the use of a multispectral 

CCD (charge-coupled device) camera to measure the NIR and red bands of crop can

opy reflectance to calculate a normalized difference vegetation index (NDVI). This 

NDVI could provide a quick determination of vegetated areas and a simple estimation 

of plant growth conditions (Rouse et al., 1973). However, the soil reflectance from 

low-density canopy areas and the insensitivity to leaf chlorophyll content change in 

high-density canopy areas would affect the validity of NDVI data for indicating crop 

conditions (Thenkabail et al., 2000). Various studies for formulating different veg

etation indices (VIs) and other sensing enhancement methods using different bands 

have been investigated, and researchers found that the use of right combinations of 

different bands could improve the accuracy and robustness of the data collected for 

measuring crop nutrition (Noh et al., 2006), diseases or pests (Prabhakar et al., 2011), 

weeds (Tang et al., 2000), and water stresses (Méndez-Barroso et al., 2008). 

Another common method for obtaining spatial data for precision crop production 

is georeferenced sensing, which could be applied to both soil and crop sensing. In 

georeferenced sensing, sensors are often coupled with a global positioning system 

(GPS) to generate field maps of measured parameters. Figure 4.2 shows an example 

of such a sensing system installed on a mobile sprayer for implementing VRA based 

on a georeferenced application map. Depending on the spacing between passes, 

travel speed, and measurement/sampling frequency, the number of sensed points per 
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FIGURE 4.2  An example of a georeferenced sensing system installed on a mobile sprayer 

for implementing variable-rate application based on a georeferenced application map. 

area can be varied to change the density of the sampled grid, which in turn changes 

the resolution of the georeferenced field map. 

As most soil characteristics within a field are relatively stable over a reasonable 

time, soil property measurement could often be performed via georeferenced grid 

soil sampling and laboratory testing, or georeferenced real-time measurement using 

on-the-go sensors during field operations. Grid soil sampling and testing is often 

done by collecting a few soil samples using either a soil probe or simple hand tools 

within a predefined uniform grid overlaid on the field being sampled. The samples 

are normally sent to soil laboratories for analysis. This method requires time to com

plete the process, and is commonly used to support making more profitable use of 

fertilizers and lime (Franzen and Peck, 1995). Georeferenced real-time measurement 

can use some electrical and optical sensors to measure soil properties, such as soil 

conductivity, texture, organic matter, moisture content, and nutrient and pH levels, 

and generate appropriate soil property maps (Heege, 2013). A number of successful 

applications for collecting soil property data have been reported, such as checking 

soil moisture for planting depth control (Norman et al., 1992), sampling soil nutrient 

levels for controlling variable-rate fertilization (Bermudez and Mallarino, 2007), 

and variable-rate injections of herbicides based on soil texture and organic matter 

content (Qiu et al., 1998). 

While the spatial variation data of both soil properties and crop growth condi

tions are collectable using different sensing technologies, such data are often not 

directly observable in estimating crop yield as there are many other factors, such as 

climate, diseases, insects, and weeds, which could affect it. One solution is to moni

tor the spatial variation of the yield. 

Introduced in early 1990s, yield monitoring is often the first step many farmers 

take in practicing PA. A yield monitor coupled with a GPS receiver on a harvester 

can measure crop yield data combining mass, moisture, area covered, and location 

being harvested to generate a yield map showing the spatial variability across a field. 

As one of the most valuable sources of spatial data for PA, yield maps can be used in 

evaluating the year-to-year variation of yield distribution within a field to find areas 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

108 Precision Agriculture Technology for Crop Farming 

with potentially high and low yields, which is essential for analyzing and identifying 

the limiting factors of spatially variable yield, and setting up realistic yield goals to 

vary inputs according to yield potentials in specific areas. 

4.2.2 TEMPORAL SENSING 

Temporal measurement of spatial variability of crop growth information, such as 

color, density, and height, during different growing stages, contains essential infor

mation indicating crop growth conditions and is more observable than soil properties 

in estimating yield. As crop growth conditions are spatially variable within a field, 

the temporal measurement could be treated as a series of spatial measurements over 

the same field during certain periods of the growing season for obtaining either crop 

stress or phenotyping information. Spectral image sensing also plays an important 

role in temporal sensing. The resolution for temporal measurement is specified as the 

measurement frequency of a specific location, often in days or sometime in weeks 

depending on the rate of change of the variable being measured. 

Temporal measurement of crop stresses during the development stage could often 

provide important information for predicting crop yield, thus alerting farmers to take 

remedial measures to mitigate yield loss. There have been many promising develop

ments in temporal sensing technologies capable of detecting crop stresses. One well-

studied technology is multispectral imagery sensing that collects light reflectance 

from some carefully selected spectral bands within the visible and NIR spectrums, 

which are sensitive to variables related to plant development and crop yield. NDVI 

has been widely adopted in measuring crop stresses during its development stage. 

Based on some extensive studies, Jackson and Huete (1991) suggested that when the 

NDVI value is between 0.30 and 1.00, it indicates the vegetation is most likely in 

healthy condition; when the value drops to between 0.10 and 0.30, it indicates the 

vegetation could be unhealthy or sparse; and when the value is close to zero or even 

negative, it often indicates there is no vegetation. 

However, the capability of using NDVI to indicate healthy crop conditions based 

on Jackson and Huete’s classification may only be applicable within a limited win

dow of the crop growth season. Quarmby et al. (1993) found that yield estimation of 

wheat, cotton, rice, and maize crops using NDVI data could be stabilized at 50–100 

days prior to harvest. Xiang and Tian (2011) have studied the temporal change of the 

NDVI readings of corn canopy within a 0.8-ha field in Central Illinois from 14 days 

after planting (DAP) to 122 DAP, and found that the NDVI for both fertilized and 

unfertilized crops began at very similar levels from below 0.2 before 25 DAP, and 

reached a level around 0.7 for both conditions around 31 DAP (V6 stage, defined as 

the corn growth stage of the collar of the 6th leaf being visible). A noticeable NDVI 

values disparity (greater than 0.1) was observed between fertilized and unfertilized 

crops after V7 stage, and then became close again around 58 DAP (VT stage, defined 

as the corn growth stage of the last branch of the tassel being completely visible). 

Figure 4.3 illustrates the NDVI variation corresponding to the DAP. This research 

verified an assumption that there exists an optimal window for using multispectral 

sensors to detect temporal changes of crop nitrogen stress by means of measuring 

some types of crop VIs such as NDVI. 
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FIGURE 4.3  An example of temporal changes of canopy NDVI values for fertilized and  

unfertilized corn plants over a growth season. (Data courtesy of Dr. Haibo Xiang.) 

Temporal measurement of soil moisture dynamics with depth plays an important 

role in irrigated crop production to achieve effective irrigation control. Balenzano 

et al. (2011) investigated the potential of using satellite remote sensing data to map 

temporal changes of surface soil moisture content underneath crops, and found that 

soil moisture content could be retrieved during the whole growing season, with accu

racies ranging between 5% and 6%. Based on their studies using a wireless soil mois

ture sensing network to assess temporal stability patterns of soil moisture at different 

locations, Hedley and Yule (2009) found that the temporal stability of soil moisture 

could have substantial spatial variability from moderate to strong. A sensor network 

could provide the needed information to predict soil water status in different zones 

in the field to support automated variable-rate irrigation control in order to improve 

water use efficiency. 

4.2.3 MAKING DATA OBSERVABLE 

Measuring plant and soil properties continuously could gain an understanding of 

crop growth changes over time under different conditions. However, most of the data 

could not directly provide an indication of what the expected crop yield will be until 

being harvested (Lamb et al., 2008). To solve this problem, it is essential to make 

the collectable data observable. In PA management, observable data are defined as 

a measurement of yield-indicating crop growth conditions, which could provide 

an indication of expected yield, as a result of some field operations. Therefore, it 

is essential to obtain some observable data of a precision crop farming system for 

effectively controlling the process in the hope of getting the expected yield. One 
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common way to extract the observable data from the collectable data is the use of 

some yield estimation model based on the collectable plant and/or soil property data. 

The most directly observable data for managing precision crop production is the 

yield. Numerous research projects about getting such information accurately and in 

a timely manner have been reported. Yield monitoring on harvesters is probably the 

most direct measure of the crop yield, and many successful yield monitoring technol

ogies have been developed and/or introduced (Arslan and Colvin, 1999; Thomasson 

and Sui, 2003; Price et al., 2011). However, because the data can only be obtained 

after the crop is harvested, from a production management point of view, these data 

are obtained too late to be observable. Different means of assessing or estimating 

the yield before the crop is harvested is essential to obtain the needed observability 

to support a timely management of the production process. Using remotely sensed 

imagery to estimate crop yield variability within a field has been widely studied, and 

much success reported (Quarmby et al., 1993; Uno et al., 2005; Yang et al., 2007). 

The effectiveness of controlling precision crop production relies strongly on the 

capability of getting the observable data from a large volume of collected data, and 

then determining some appropriate actions in the hope of obtaining the expected 

yield. Field operations normally create a large volume of data as a typical yield moni

tor would collect over 600 data points per hectare, each with several characteristics 

(latitude, longitude, yield, moisture, etc.). The rapidly increasing and overwhelming 

volume of recorded production-related data, plus the need for special skills and/or 

tools to analyze and interpret such data, makes it very difficult for farmers to effec

tively make use of those collected data. This data-driven decision-making process 

in PA poses a number of data mining problems, and one of the fundamental ones is 

yield prediction. Creating some automatic means for predicting yield, based on these 

data, will help farmers remove a major obstacle to precision crop production, and 

thereby gain efficiency and economic benefits. Numerous efforts toward develop

ing robust and trustworthy yield prediction tools, from classical regression-based 

approaches to machine learning-based neural networks modeling or support vector 

machines methods (Uno et al., 2005), have been undertaken. However, the ability to 

make a trustworthy yield prediction using those tools is still a big challenge due to 

the extreme conditional complexity induced by many factors, ranging from changes 

in climate patterns to individual differences among plants during growth season. 

A study of spatial and temporal variation yield data over a 5-year period of a com

mercial field located in Central Illinois showed that the spatial variation of the yield 

could be presented in different patterns within a field over the years (Zhang and Han, 

2002). Randomly picking yield data from a few monitoring zones scattered over 

the field as presented in Figure 4.4, it is shown that the normalized yield in zones 5 

and 8 varied marginally with different patterns around the average yield of the year 

over the studied period. In comparison, the normalized yield at zones 1 and 4 were 

noticeably lower than the average, while zone 9 was always higher over the period. 

The wide range of yield variation across zones and over time shows that yield 

responses to the management input did not result in a consistent outcome. Such poor 

robustness in yield responses may be attributed to numerous factors that will require 

further analysis to uncover. For example, an investigation of the effect of seasonal 

precipitation on yield revealed that the amount of winter precipitation correlated 
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FIGURE 4.4  An example of yield variation (normalized to the average yield of the year) 

over a 5-year period (bars from left to right represent data of 1996–2000) from 10 randomly  

picked zones within a commercial field in Central Illinois. 

with the yield variation most noticeably compared with other seasons. Knowing 

what results to expect from inputs applied is one of the greatest challenges in mak

ing the collected data observable. 

In addition, as almost all field operations are performed using some type of 

machinery in motion, the machine drivers need actionable instructions, namely, 

ready-to-use commands, rather than some forms of raw or processed data to apply a 

controlled input in real time. For example, in performing variable-rate fertilization, 

what an applicator needs to know is how much a nozzle should be opened while the 

machine is traveling at a certain speed within a specific region in a field. Any other 

format of the information would induce some difficulties for the driver to effectively 

perform the work. Therefore, one of the basic requirements for a data-based deci

sion-making process is the ability to extract actionable instruction from the collected 

data using a “transparent-to-user” method “on-the-go.” 

4.3 CONTROL FOR PRECISION AGRICULTURE 

As a data-intensive management system, precision crop production is a site-specific 

management concept that observes and responds to intrafield variations to optimize 

returns on resource inputs. Effective implementation of PA requires having a good 

understanding of how to control resource inputs effectively using a transdisciplinary 

approach. Like many control systems in industrial processes, control of agricultural 

production is also applied through obtaining and processing production data, mak

ing operational decisions based on the processed data, and implementing the deci

sion (Schueller, 2013). This section will focus on analyzing and discussing a few 

fundamental issues in making PA decisions. 

A PA production management system shares many similar features in format 

with a control system. For example, in managing PA production, farmers often have 
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their expected outcomes in mind when planning and conducting the best possible 

operations in response to the situations they face to achieve their production goal. If 

comparing such a logic flow to a control system, they are almost identical in format. 

To control a system requires having a set point for the expected output from the 

system being controlled, and using a controller to regulate the system operation at an 

optimal condition to obtain an output matching the set point. To implement PA pro

duction, farmers must keep an expected yield in mind to determine the right amount 

of resource inputs for the situation in hope of getting the anticipated harvest based on 

their knowledge and experience. Lack of a systematic method for managing variable 

inputs to obtain predictable outputs remains a major obstacle to effectively adopt PA 

production (Robertson et al., 2012). One potential approach to solving this problem 

is to use control theory to formulate a systematic scheme for selecting inputs in pre

cision crop production. Such an approach is similar to that of controller functioning 

in a control system. 

4.3.1 PRESCRIPTIVE CONTROL 

The theory behind control systems and the practices in managing precision crop 

production lays the foundation for formulating PA control schemes. The core prem

ise of PA control is the variation of resource inputs to obtain the expected yield with 

minimal deviation. One of the major challenges in controlling such a process is that 

the actual yield is measurable only at harvest time. Therefore, the adoption of a pre

scriptive control is the logical choice for this application. 

Typically, a prescriptive control uses a yield prediction model, either mathemat

ics-based or knowledge-based, to estimate the appropriate resource inputs needed to 

get the desired yield at the specific site in terms of the yield potential of this loca

tion. Conventionally, farmers have a management strategy for their production. They 

manage resource inputs accordingly in the hope of achieving their production goal. 

Such resource input management strategy, often formed over years of experience on 

specific fields, constitutes the base of the prescription control. As the crop response 

to planned implementations will be disturbed by changes in climate conditions dur

ing the growth season, it is often difficult to manage this type of production system 

and to have the final yield exactly match the expected production goal. Therefore, 

such a prescriptive management practice could be symbolized using a basic open-

loop control as the farmers conduct their field operations based only on their plans 

(or only on experience) as they can do very little to change the crop growth during 

the season. Using a block diagram presentation commonly used in control system 

modeling, a typical process of prescriptive crop production management could be 

represented as in Figure 4.5, with a transfer function expressed as follows: 

Y
 A = (GY  P − D) P  (4.1) 

 

where YA is the yield from the production; G is the resource input management plan; 

P is the crop responses to the input; YP is the yield potential; and D is the climate 

and/or field condition disturbance. 
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Crop
yield, YAPlant 

growth (P)
Resource input

plan (G) 
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potential, YP 

Climate/field condition
disturbance, D 

+ 
– 

FIGURE 4.5  A system block diagram of a basic open-loop prescription control system for 

PA production. 

This prescriptive control is very similar to gain scheduling control in control the

ory, which is a practical approach for controlling nonlinear systems using a family of 

linear controllers adequate for different operating points of the system (Levine, 1995). 

Because precision agricultural systems are normally nonlinear, gain scheduling con

trol could offer an effective means for handling the nonlinear feature. However, it 

may require some special processes to make the control scheme be practically usable 

in precision crop production. One such essential process could be the creation of an 

input management model based on the collected input–yield relationship using statis

tical modeling methods. Owing to the complicity of the ecobiological process of crop 

growth, such input management models are normally empirical-based, which often do 

not intend to describe any physical or biological processes of the crop growth, but only 

attempt to represent the relationship between inputs and outputs using any expressible 

means. One of the unique issues in PA control is its extremely slow responses to the 

input, which are normally impossible to observe after days, or weeks, of the inputs 

being applied. The actual yield corresponding to a certain input could not be directly 

measured until after harvest, even though many of the collectable data could provide 

information indicating the attribution of the input(s). 

The extremely slow and uncertain responses of yield to management input causes 

difficulty in implementing time-domain-based gain scheduling control in PA pro

duction. We could apply the format of a gain scheduling control concept, but use a 

non-time-domain statistical input–output relationship to formulate the control law for 

the prescriptive control to make it suitable for PA applications. Figure 4.6 presents an 

example of the yield response of hybrid corn to the amount of nitrogen (N) obtained 

from a set of tests conducted at the Monsanto Water Utilization Learning Center at 

Gothenburg, Nebraska in 2010. From this figure, it shows that the yield of this par

ticular type of hybrid corn responded largely to the first 135 kg ha−1 N applied, and the 

yield increases diminished quickly with additional N applications (Monsanto, 2010). 

This first-order-like nitrogen-to-yield model to describe the crop growth response 

to nitrogen input could provide the base for PA decision making, and could be 

defined as the transfer function of nitrogen application rate to crop yield in a PA 

control system. When the transfer function of a system is identified, it offers a con

venient method of using its inverse transfer function to design a controller for the 

system. In this example of variable-rate nitrogen management for controlling hybrid 

corn yield, the prescriptive controller could be designed using an inverse nitrogen-to

yield model as illustrated in Figure 4.7 to determine the appropriate rate of nitrogen 

application for obtaining an expected yield. 
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FIGURE 4.6  An example yield response model of a hybrid corn to a different nitrogen 

application rate based on the data published by Monsanto (2010). 

This basic open-loop prescriptive control approach is suitable for site-specific 

resource input management for minimizing the influences of soil property varia

tion in a field to best attain the yield potential on a site. Being inherently limited 

by the inability to respond to the climate or other disturbance occurring during the 

plant growth season, a robust enhancement method based on multiple years of yield 

FIGURE 4.7 An example of an inverse transfer function for determining N application rate 

to obtain an expected yield of corn. 
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FIGURE 4.8  A system block diagram of an enhanced open-loop prescription control sys

tem for precision crop production to achieve the yield potential of a specific site. 

history using some robust statistical analysis methods on the site has been applied 

in hope of minimizing such effect. Another improvement to the basic open-loop 

prescriptive control is to use the economically achievable yield potential of a zone, 

instead of reducing the variation between zones of high and low yield potentials, 

since the yield in some regions of a field could hardly reach the average yield of the 

field (as illustrated in zone 4 in Figure 4.4). Figure 4.8 shows the system block dia

gram of such an enhanced open-loop prescriptive control. 

Numerous studies have been reported in support of effective decision making for 

profitably managing variable-rate inputs. An example reported by Havlin and Heiniger 

(2009) is the development of a VRA decision support tool to help make precise deci

sions for fertilizer inputs by determining the level of sufficiency of soil nutrient status 

at a specific location relative to the needed fertilizer input levels to obtain the potential 

maximum yield for corn, soybean, wheat, and cotton production in North Carolina. 

4.3.2 RESPONSIVE CONTROL 

While the enhanced open-loop control offered a potential to have a more robust 

result by using on-spot yield potential determined by multiyear yield data, it is still 

unable to respond to any climate disturbance and other condition changes during the 

growth season. An enhancement capable of responding to such disturbances/changes 

in the decision-making process, or developing a responsive control scheme, is the 

logical next step. The assumption for this type of enhancement is that the difference 

in climate and/or field condition would require an adjustment to resource inputs for 

realizing the yield potential, and such climate/field condition changes could either 

be forecasted or measured. This type of enhancement is suitable for crops requiring 

most inputs to be applied at an early stage of, or even before, the growing season. 

Figure 4.9 illustrates a conceptual system block diagram for such a responsive con

trol scheme. Its transfer function could then be expressed as follows: 

Y
 A = (GA Y  P − D) P  (4.2) 

 

where GA is an optimal input management plan corresponding to the identified situ

ation, and YP is the yield potential of the specific zone. 
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FIGURE 4.9  A system block diagram of an enhanced climate/field condition responsive  

control system for PA production. 

The core of this enhancement would allow farmers to include either climate fore

casts or the latest measurable site-specific field condition data into the resource man

agement decision-making process by best utilizing the historic yield data in similar 

conditions to adjust the input(s) responsively to the situation. Mid- to late-vegeta

tive growth-stage variable-rate nitrogen side-dress application is a good example 

of responsive control. Either based on the data obtained from in-season canopy 

reflectance sensing or from late spring soil nitrate tests, N-deficient crop plants will 

respond to additional nitrogen fertilizer being side-dress applied. It could potentially 

achieve higher yield efficiency with a smaller amount of total nitrogen fertilizer 

being applied if the amount of side-dressed fertilizer could be properly determined. 

Differential spraying in weed control is another example of applying a respon

sive control. As weeds are normally irregularly distributed in cereal crop fields, to 

achieve an operation goal of minimizing the use of herbicides, precision weed con

trol management requires making responsive application decisions to differentiate 

the location and amount of herbicides to be sprayed corresponding to the detected 

weed quantity and distribution in the fields. 

Another application of responsive control for crop production is in precision irri

gation. For example, Goumopoulos et al. (2014) have developed a proactive closed-

loop irrigation control system using an adaptive decision-making layer, which 

employed a machine learning approach to determine significant thresholds of plant-

based parameters to optimize irrigation control in response to detected plant growth 

conditions. 

4.3.3 FEEDBACK CONTROL 

With advances in PA technology, different sensing technologies can provide farm

ers with effective means of detecting crop growth indices which then can be used 

to estimate final yields and make necessary adjustments to inputs in response to the 

estimated yield (Shanahan et al., 2008). As this management practice could improve 

crop growth by modifying the resource application plan in the hope of getting the 

production output closer to the expected level, it can be considered a closed-loop 

feedback control. As previously pointed out, the control goal of precision crop pro

duction is to achieve the yield potential of a site. Since the actual yield cannot be 
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measured until it is harvested, it should be noted that in this closed-loop control sys

tem, the feedback information to the controller is not the actual system output, but an 

estimated output based on collected data that indicates the state of crop growth. Such 

feedback contains inherent uncertainty in representing the actual output. Figure 4.10 

shows a block diagram of such a closed-loop feedback control scheme for sensor-

based PA production with its transfer function expressed as follows: 

Y
 A = [ (  G  Y  P − YE ) − D]  P  (4.3) 

 

where YE is the estimated yield based on the sensed crop growth condition. 

In control theory, system response is used to describe how a system is responding 

to the changes in inputs and/or disturbances to the system and making an estimation 

of system output based on some measurable parameters. A set of time behaviors, such 

as delay time, rise time, peak time, settling time, overshoot, and steady-state error, 

is commonly used to determine a response. Figure 4.11 shows typical responses of 

system output to a change in set point for both the first- and second-order (with a 

high damping ratio) systems. The two curves in the figure demonstrate how systems 

respond to a change in the control set point and approach its final value within a 

finite period of time. A first-order system normally responds to the input slowly 

to gradually reach a stabilized output. In comparison, a second-order system often 

responds to the set point change at a much faster rate but will overshoot before the 

output is stabilized. However, owing to the biological nature of crop production, the 

time behavior in PA control is quite different from many industrial controls. From 

knowledge of agronomy, we know that the yield corresponding to the amount of 

fertilizer input exhibits a similar behavior to a first-order system with regard to the 

input amount (not time) domain. Such behavior implies that the yield control could 

be achieved through analyzing the system behavior similar to a first-order system 

and creating a system response constant analogous to the time constant in a time-

domain system for predicting yield responses to resource inputs. Meanwhile, for 
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FIGURE 4.10  A system block diagram of a closed-loop feedback control system for preci

sion crop production. 
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t 

FIGURE 4.11  An example of a dynamic response of system output to a set point. The solid 

line is the response from a second-order system and the double dashed line represents a first-

order system. 

many field operation controls, such as canopy reflectance sensing-based side-dress 

nitrogen application to correct crop N stress, the crop responses to resource inputs 

are often presented similar to those of a second-order system with a large damping 

ratio in the time domain just as shown in Figure 4.11. 

As many unexpected disturbances originated from a natural production environ

ment may draw the output away from the desired set point, a study on how to effec

tively reduce the influence of those disturbances is a particularly important research 

goal for agricultural system controls. 

While a PA control shares many features similar in format to industrial control 

systems, there are some unique ones that are not commonly seen in industrial con

trols due to the biological nature of crop production. One of the essential differences 

between PA systems and industrial control systems is that some of the inputs to a 

precision crop production system could improve crop growth only within limited 

time windows or under a few states (Ogunlela et  al., 1982; Johnson et  al., 1996). 

Unlike industrial control systems, the lack of a systematic method for varying the 

inputs to obtain desirable outputs remains another major obstacle, preventing preci

sion crop production from being effectively adopted (Zhang et al., 2002; Jochinke 

et al., 2007; Robertson et al., 2012). 

Another major difference in PA control is the uncertain response of adjusting 

input(s) to the output. The foundation of PA is built on an idea of applying the right 

amount of inputs at the right time in the right place in the hope of obtaining an 

expected output, which is similar to conventional industrial control in theory. As 

illustrated in Figure 4.6, some empirical models can be used to describe such rela

tionships between input and output. However, such a regression model can only pro

vide some information supporting an uncertain estimate of the yield as it is normally 

formulated based on collected data from previous seasons, and the predicted yield 



 

 

 

 

 

 

119 Control of Precision Agriculture Production 

response is not a tie behavior. These are some of the major obstacles for farmers in 

effectively managing their precision crop production since the collected data during 

the crop growth season is not directly useful as feedback to support making control 

decisions. One essential requirement for making feedback control of precision crop 

production manageable is making the collected data observable. 

In adopting control theory in PA management, researchers have started to apply 

state-space modeling to understand and explain the spatial correlation of crop and 

soil in the hope of gaining a more reliable prediction of yield (Wendroth et al., 1992; 

Timm et al., 2000). In state-space analysis, observability is a measure of the abil

ity to tell what is going on inside the system and whether the desired output could 

be obtained from the system through observing system behaviors. Formally, a sys

tem is said to be observable if its current state can be determined in finite time in 

terms of only its outputs. If a system is not observable, the current values of some 

state variables cannot be determined by the sensed output data. This implies that 

the controller cannot adjust those parameters to an appropriate level to obtain the 

desired output. Referring to control of crop production systems, this observability 

is reflected in the relationship between collectable crop growth data and the yield. 

To attain such observability is a practical challenge in effectively controlling crop 

production since the yield is not measurable until harvested (Lamb et al., 2008). The 

good news is that it is technically possible to detect the crop growth condition dur

ing its growing season using certain types of crop sensors. Figure 4.12 illustrates an 

example of visually detectable difference in corn plant growth conditions randomly 

FIGURE 4.12  An example of visually detectable growth condition differences among corn  

plants randomly found in a commercial corn field in the Midwest Corn Belt of the United  

States. The noticeably smaller plants could lead to a distinguishable lower yield. 
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captured in a commercial corn field in the Midwest corn belt of the United States. 

While there is still a lot of uncertainty, the noticeably smaller plants often lead to a 

measurably lower yield. 

One method to improve observability is the use of data fusion, a process of inte

grating multiple data sources to obtain a more accurate and robust estimation of crop 

yield. A study based on remote sensing data from 37 fields in Texas showed that it 

could improve the average yield estimation from about 30% underestimation using 

only the raw satellite imaging data to a 2% overestimate after using three state vari

ables (stage of crop development, green leaf area index, and aboveground dry mass) 

(Maas, 1988). In a study on the spatial dependence between crop yield, effective soil 

N and N2 fixation, Wendroth et al. (1992) proved that it was possible to use a state-

space approach to determine spatial variability of yields from local field observations. 

Another major challenge in practicing PA is the uncertain responses of adjust

ing inputs(s) to the output. While PA requires employing a responsive management 

strategy based on detailed, site-specific information, it also requires determining 

how much of the observed yield variability was caused by natural variation in yields, 

how much by variations in management practices, and thereby to determine what 

management practices are most appropriate for what conditions, both edaphic and 

climatic, in a management zone. To solve this problem, a study on the controllabil

ity of precision crop production systems is essential. As the collectable data from 

the production process is often indirect measurement of factors that could affect the 

final yield, we can use two definitions of controllability: state controllability and 

output controllability. The former describes the ability of an external input to change 

the internal state of a system from any initial state to any other final state in a finite 

time interval; and the latter defines the ability to change the output. As a precision 

crop production system is often not directly observable with regard to the yield, but 

observable in terms of the crop growth condition (plant growing status) or crop yield 

potential (soil fertility status), the controllability in precision crop production typi

cally means the state controllability if not specifically notified. Many variable-rate 

resource input decisions are made based on crop growth condition or yield potential, 

which is a state variable rather than the production output. 

One essential assumption for variable-rate-based site-specific crop production is 

that it could attain a higher crop yield by varying the resource(s) input to bring crop 

everywhere in a field to its yield potential (McKinion et al., 2001). However, such 

an assumption does not always lead to the best solution in practice. Based on an  

extensive study, Peng et al. (2010) found that there was no correlation between grain 

yield and total N input in rice production in China, and that such poor correlation 

could be attributed to many factors, including location, season, variety, pest damage, 

and other crop management practices. Raun et al. (2011) investigated the relation

ship between grain yield and its response to N in long-term wheat and corn experi

ments, and also found no clear relationship between response to N and grain yield. 

Upon further study, they found that both yield and response to N were consistently 

independent of one another. As both affect the demand for fertilizer N, estimates of 

both should be combined to calculate realistic in-season N rates. As N management 

is a common practice in realizing state controllability, such findings present a chal

lenge to understand whether state controllability is sufficient for PA management or 
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a study on output controllability is essential to advancing PA. Control system theory 

has proven that a state controllable system is not necessarily output controllable, and 

vice versa. Numerous reports have been published on predicting grain yield based on 

crop growth conditions (Diker and Bausch, 2003; Wendroth et al., 2003; Tremblay 

et al., 2010). Such research offers a method for utilizing the controllable crop grow

ing state to achieve the controllability on final yield. 

A common precision crop production practice that many farmers are following 

today is first collecting yield maps of their fields during harvest, and then utilizing 

these maps combined with other relevant information, such as weather data, to make 

field management decisions for implementing variable-rate preplant fertilizer appli

cations, precision planting, and/or postplanting fertilizer applications (McKinion 

et al., 2010). However, the use of yield maps in making accurate decisions on pro

duction management for the next season is always difficult due to many mitigating 

factors (Kaspar et al., 2003). Research revealed that the standard deviation for crop 

yield at different parts of a field under the same management practice could surpass 

20%, with the possibility of the yield from one zone being less than 60% of the yield 

from a neighboring zone (Zhang and Han, 2002). Such inconsistency in final yield 

adds another layer of complexity to PA, the lack of robustness in agricultural system 

control under the same management actions. 

Crop fields often vary between and within themselves in landscape position, ter

rain attributes, erosion class, and soil properties (Stone et al., 1985). Such frequent 

and random variations, along with uncertain weather changes, play a major role in 

affecting the lack of robustness in controlling precision crop production. A success

ful precision agricultural control system should be observable, controllable, and 

robust. However, this is difficult due to the uncertainty inherent to crop produc

tion, often entering an agricultural control system through uncertain states caused 

by spatial or temporal variation and actions constrained by technical or economic 

difficulties (Adams et al., 2000). This presents challenges to creating robust agricul

tural control systems. For example, some transient spatial factors, such as insect or 

disease pathogen spreading, planter or applicator malfunctions, and measurement 

error in yield monitoring, can substantially affect the yield or yield observation in 

specific areas in 1 year but not every year (Colvin et al., 1997; Lark et al., 1997). How 

to robustly manage an uncertain crop production system with unknown dynamics 

subject to unknown disturbances is still the key problem a precision agricultural 

control system needs to solve. 

4.4 PRECISION AGRICULTURE IMPLEMENTATION 

Another essential element in controlling a PA process is the reliable implementa

tion of planned field operations as any management plans will never result in any 

effectiveness unless such plans are accurately implemented. A typical field crop 

production process normally includes some or all the following operations: plan

ning, planting, resource input management (often implemented in the forms of either 

VRAs or targeted applications), and harvest. To provide farmers with reliable tools 

to effectively implement those operations, many automated technologies have been 

developed in the past few decades. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122 Precision Agriculture Technology for Crop Farming 

4.4.1 PLANNING  AND PLANTING 

Effective PA management begins with planning. An appropriate site-specific pro

duction plan based on soil property and yield potential plays a vital role in practicing 

precision crop production. Farmers have doubts about investing in precision agricul

tural technologies because of their inability to directly apply the collected data as 

feedback for improved management practices. While this remains one of the biggest 

obstacles for farmers to gain the promised benefits, a transformation of a long-term 

yield-map dataset into profit maps based on economic thresholds for profitability at 

different zones could help create a profitable site-specific management plan (Massey 

et al., 2008). This method uses actual input costs, crop prices, published custom rates 

for field operations, and region-specific land rental prices to transform yield maps 

into profitability maps, which could map yield into profitability metrics for differ

ent management options to support farmers in planning a profitable precision crop 

production. 

After a production plan is made, it needs to be implemented precisely following 

the implementation plan, and sometimes also requires having the capability of adapt

ing to scenario changes by modifying or changing some specific actions during field 

operation. In the preplanting to planting process, there are a few typical field opera

tions that could be controlled precisely in implementation. Normally, the first field 

operation in crop production is field preparation. A zone tillage, a form of modified 

deep tillage in which only narrow strips are tilled, requires positioning the plows 

precisely to target strips to agitate the soil to reduce soil compaction and improve 

soil internal drainage. To achieve precise tillage depth control, both an auto-steering 

system and a tillage depth control system would be required. An auto-steering sys

tem could accurately guide a tractor following the target strips to achieve improved 

operation efficiency, accuracy, and speed, therefore gaining financial benefits from 

practicing precision zone tillage. Using an automated tillage depth control system, 

the plows could automatically follow a predetermined tillage control plan to adjust 

the tillage depth. Xie et al. (2013) have developed a depth control system capable 

of adjusting tillage depth from −100 to −200 mm within a 3.5 s response time and 

with ±8 mm depth control accuracy. Wells et al. (2005) verified that deep tillage in 

general could result in a yield improvement for corn, soybean, and wheat compared 

to those receiving no deep tillage. The use of an RTK-DGPS-guided auto-steering 

system could accurately navigate a tractor to perform controlled-traffic farming by 

traveling only on a few fixed traffic lanes in a field to create nontrafficked cropping 

zones with optimum soil structure. In addition, the auto-steering function has dra

matically improved operator comfort by those who have adopted this technology. 

Planting or seeding is another critical operation in precision crop production. It 

requires putting the exact number of seeds or seedlings precisely at the right place, 

and is implemented using machines in modern mechanized agricultural productions. 

Precision planting or seeding often requires having an accurate control of the num

ber, as well as the location and depth of seeds or seedlings being planted. Numerous 

commercial products of planters and seeders capable of attaining the required 

seeding/planting numbers and depth accuracy are available in today’s market. One 

addition to improve the position accuracy is the increasing adoption of GPS-based 
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auto-steer technology for those planters/seeders. As it could help to reduce overlap 

and eliminate skips, and therefore could result in a reduction of input costs for labor, 

seeds, and fuel, the auto-steer planting or seeding technology has been praised by 

farmers as the most effective PA technology. Based on Deere & Co., a high-accuracy 

auto-steering system could reduce overlap by up to 90% through accurate and repeat

able guidance in both curved and straight tracks in crop fields (Deere & Co., 2013). 

Yuan et al. (2011) have developed a variable seeding–fertilizing planter suitable 

for no-tillage cultivation practices to realize yield potential. This precise seeding 

and fertilizing system could adjust the seeding distance and control the amount of 

fertilizer being applied in terms of a predeveloped seeding and fertilizing plan (or 

prescription), supported by a GPS. In adjusting the seeding space, a seed releasing 

mechanism was automatically controlled according to the planned seeding rate and 

the detected planter traveling speed at the location. Meanwhile, a predetermined 

amount of fertilizer would be applied according to a prescription using an automatic 

variable-rate applicator. Yuan’s prototype could control the seeding space from 10 

to 20 cm with a maximum error of 4.5%. Variable-rate fertilization accuracy was 

within ±3.3%. 

4.4.2 VARIABLE-RATE APPLICATIONS 

Another critical PA operation is VRA of fertilizers, herbicides, or pesticides. Much 

success has been reported in developing applicators capable of implementing VRAs 

based on predetermined plans. While the specific designs could vary from one 

machine to another, the core element of variable-rate technology (VRT) normally 

involves an integrated sensor and rate controller system. The sensor system often 

includes a GPS receiver and is typically used to provide georeferenced information 

for setting the site-specific set points for rate controllers to deliver different rates of 

agrochemicals to the location. Most existing commercially available applicators use 

either pulse width modulated (PWM) actuated fixed orifice nozzles (PWM applicator) 

or fast close (FC) valve controlled variable orifice nozzles (FC applicator) to imple

ment the VRT applications. A study of the response time of those designs showed that 

the PWM applicator resulted in a slightly faster response time than the FC applicator, 

but the latter could maintain a more stable flow rate and pressure with less applica

tion error either under sensor-based or map-based controls (Bennur and Taylor, 2010). 

Applying the right amount of fertilizer in response to detected crop nutrient stress 

on-the-go is one of the primary implementation mechanisms in precision crop pro

duction. An on-the-go crop nutrient stress sensing system capable of self-calibrating 

to environment changes could provide the necessary machine intelligence to support 

more trustworthy intelligent variable-rate fertilization. Figure 4.13 shows an example 

of sensor-based intelligent applicator. In this intelligent machine, a model-based yield 

potential estimator based on sensed crop nitrogen stress using an applicator-mounted 

multispectral imaging sensor was used to determine the application rate (Noh et al., 

2006). A core element in this intelligent machine is the self-calibration system capa

ble of automatically calibrating the detected crop canopy reflectance according to the 

current light conditions to remove all soil background and over/underexposure can

opy surfaces for a more consistent measure of canopy reflectance (Noh et al., 2005). 
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FIGURE 4.13  An example of an intelligent variable-rate applicator. The machine-mount 

crop sensing system is capable of self-calibrating to natural lighting conditions. 

One of the fundamental requirements for VRA is the dose accuracy. However, 

there are a few factors that could make it difficult to achieve accurate dosage in field 

operations. For example, an uneven dose could result from some undesired sprayer 

boom vibrations of the extra-wide boom (Figure 4.14) caused by the sprayer travel

ing on uneven ground surface at different speeds or under different wind effects. 

Based on a study reported by Langenakens et  al. (1995), the spray deposit could 

vary between 0% and 1000% induced by vertical boom vibrations and between 20% 

and 600% from the horizontal ones, which would lead to greatly reduced spray effi

ciency, and therefore reduced yield. The control of undesired sprayer boom vibra

tions is therefore essential for achieving precise VRA. Tahmasebi et al. (2012) have 

designed an iterative learning active force control for an active suspension system of 

spray boom, and reported having the potential to improve undesired vibration under 

given parameters and conditions. 

Yet another technical challenge originates from the uneven amount of chemi

cals at individual nozzles across an individual applicator. An unconfirmed applicator 

operator’s observations indicated that the difference in injected anhydrous ammonia 

could be over 50% of the norm between the nozzles on the same applicator, which 

could be caused by an imperfectly designed distribution manifold. To have sufficient 

Jolting Yawing Rolling 

FIGURE 4.14 A few scenarios of unwanted sprayer boom vibrations or waving. (Data cour

tesy of Professor J. De Baerdemaeker.) 
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nitrates in the field, it is not uncommon for farmers to apply up to 20%–30% more 

fertilizer than necessary to compensate for this uneven application. An improved 

controllability of the ammonia application rate could effectively reduce the con

sumption of nitrogen fertilizer and consequently reduce nitrate leaching. 

A precision irrigation system is commercially available now. The system allows 

spatially variable delivery of water and fertilizers to different zones in a field. One 

example of such a system was a microsprinkler system with individually addressable 

nodes developed by Coates et al. (2006) for tree fruit orchard use. One microsprin

kler node, assembled with a standard microsprinkler emitter, a latching solenoid 

valve, and a control circuit, was installed at each tree in the orchard, and a drip line 

controller was used to store the irrigation schedule and issued commands to indi

vidual nodes. A master computer allowed remote access to the drip line controller 

using a wireless modem to update the schedule and monitor the implementation. The 

delivery of prescribed variable-rate water and fertilizer was implemented by operat

ing the emitters for different durations at individual nodes. 

4.4.3 PEST  AND WEED CONTROL 

Accurate target pest control using target sprayers is a promising pest management 

method for precision horticulture production, especially for control of some specific 

pests in tree fruit/grape production. For example, control over cutworms, a primary 

pest in vineyards, could be accomplished using traditional broadcasting application 

methods, which could use a conventional canopy sprayer, or by a targeted barrier 

application, which requires using a robotic self-targeting sprayer. Kang et al. (2011) 

have developed a robotic target sprayer for vineyard pest control (Figure 4.15). This 

sprayer integrated an efficient target recognition system and a rapid and precision 

sprayer control system to ensure an adequate coverage of pesticide on grape trunks 

for effectively repelling climbing cutworms to attain the crop protection goal. Field 

efficiency tests revealed that a targeted application in a robotic precision operation 

FIGURE 4.15  A robotic target sprayer for vineyard pest control. It can use less than 10% 

of pesticides to achieve similar efficacy with certain pest control compared to conventional  

broadcast applications. 
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could reduce pesticide usage 90% or more compared with a traditional broadcasting 

application and achieve a similar efficacy. 

Precise weed management using target sprayers is another promising method for 

reducing labor dependency, decreasing chemical inputs, improving food safety, and 

lowering production costs for many crops, especially for vegetable crops. Supported 

by auto-guidance technologies, an auto-tracked tractor could run a cultivator closer 

to the crop row within a centimeter precision to achieve a high speed and high effi

cacy in interrow (between crop rows) weed control (Han et al., 2002). As precise 

mechanical weed management also requires effective intrarow (within the crop row) 

weed control, and intrarow weeds are in general much more difficult to eliminate 

mechanically than the interrow weed due to their proximity to the crop rows, great 

effort has been directed to developing practical automated or robotic solutions for 

precise inter- and intrarow weed control. Such an effort requires bringing in exper

tise in plant sciences, engineering, and economics together to address the challenge. 

A few core technical barriers to effective target application exist: a robust real-

time sensing technology capable of detecting and mapping weeds and differentiat

ing them from crops; a high-speed and high-accuracy weeding mechanism capable 

of removing both inter- and intrarow weeds. Numerous research projects focused 

on developing aforementioned core technologies have been initiated in the past few 

decades. Tang et al. (2000), among a few early researchers in this field, had studied 

the use of machine vision-based weed detection technology for applications in out

door environments, and successfully developed a supervised color image segmenta

tion method usable for field weed detection under natural lighting conditions of both 

sunny and cloudy days. Today, a few weeding robot products are becoming com

mercially available. For example, a research team from the University of Southern 

Denmark has been working with their manufacturer partners to convert their 

research outcomes to a commercial product for a field weeding robot by integrating 

control systems, tractive mechanism, and weeding tools in one mobile platform, and 

had made it available to farmers performing more environmentally friendly crop 

production (Jensen, 2013). 

4.4.4 HARVEST AUTOMATION 

Harvest automation, from site-specific yield monitoring, operation management, and 

machine control to selectively harvest, is an essential operation in control of agri

cultural production. Since it was introduced in the early 1990s, yield monitoring has 

become a standard automation function for modern agriculture, and a large selec

tion of yield monitors can be purchased either from the combine manufacturer or an 

independent yield monitor manufacturing company. A yield monitor, consisting of 

at least a grain flow sensor, a grain moisture sensor, and a GPS receiver, is simply 

an electronic data collection system for harvesters collecting yield data at a spe

cific location. Collected georeferenced yield data are used either to build field yield 

maps for a given year or yield frequency maps over multiple years. As such spatial-

temporal variation maps could be predictive of yield potential, yield monitoring and 

mapping is considered the starting point for implementing precision crop production 

management. 
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Efficient harvesting needs to have a harvester operating at its optimal condition. 

One of the most straightforward ways is to make the harvester very easy to operate 

so that every driver can operate the machine optimally, and machine automation is 

the key to providing such capability. Harvest efficiency is strongly influenced by 

the biological variability of the crop, which could be changed during harvest due to 

variations in weather, soil type, and environment. To keep a harvester operating at its 

optimal condition under varying field conditions, a standard practice is to automati

cally regulate the forward speed, which directly changes the feeding rate based on 

measurable variables such as engine load and grain mass flow. 

The harvest efficiency could also be increased by improving the overall opera

tion efficiency. An innovative harvest system automation technology, based on auto-

guidance technology to synchronize grain carts in automated grain unloading from 

a working combine, has been extensively studied by both the academy and industry 

for filling the gap. Originated from a master–slave navigation, often using a manned 

combine harvester (the master) to control an unmanned grain cart (the slave) follow

ing the master at a designated angle and distance, the core of multimachine synchro

nization is a model of communication, which creates an in-field, high-speed wireless 

machine control network to facilitate synchronized speed and location control 

between neighboring machines. Similarly, machine synchronizing control systems 

have also been successfully marketed by major agricultural equipment manufactur

ers. This multimachine coordinating and synchronizing harvesting technology could 

help farmers to increase their efficiency, reduce operation costs and improve safety. 

Ideally, crops should be harvested at an optimal stage for the best quality and 

yield. However, owing to the biological and environmental complexity involved in 

agricultural production, it is almost impossible for all crops to mature uniformly. 

Mapping and monitoring the spatial variation of crop maturity during the harvest 

season will provide time-critical information for farmers to selectively harvest crops 

at their optimal maturity. Compared to the primary area of interest being the VRA 

of resource inputs in large-scale grain production, selective harvest is more attractive 

in fruit and vegetable production as the prime quality produce will often bring in a 

better economic gain. Selective harvesting of fruits or vegetables is often based on a 

maturity or quality sensing evaluation. 

4.5 SUMMARY AND DISCUSSION 

The PA process can be viewed as a control process of crop production with some 

unique features. It offers farmers the possibility for making the best use of resource 

inputs for reaching the yield potential from a specific site. However, in a recent inter

national PA forum, the world research leaders collectively identified one of the major 

obstacles preventing farmers from gaining promised benefits of PA as the lack of a 

systematic and automated method for supporting them in making optimal and trust

worthy operation decisions based on the collected data. 

This chapter intends to use control system theory to lay a foundation for creating 

some systematic methods for making optimal and trustworthy decisions for more 

effective precision crop production. Technology development in PA over the past 20 

years has made the data collection and processing technology able to robustly obtain 
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necessary crop and soil data for estimating yield potentials and/or monitoring actual 

yield on specific locations in a field. Many agricultural equipment manufacturers 

have made machinery capable of implementing different site-specific precision oper

ations. This chapter introduces a new concept of formulating a systematic method for 

making appropriate operation decisions based on yield potential or estimated yield 

in a format similar to a control system. It could provide an opportunity to integrate 

collected information of precision crop production in supporting more consistent 

precision management. 

It is also worth pointing out that there are fundamental differences between a typ

ical PA management system and the one described by traditional control theory. The 

most important difference is the system response to the input: in PA management, 

the system response such as the yield of a specific site to the amount of fertilizer 

being applied often describes how the final output would respond to the amount of 

input applied to the system, and present an input–output relationship; while in con

ventional control theory, the system response is used to describe how fast a system is 

responding to the changes in inputs and/or disturbances to the system and presents a 

time-domain reaction. Such a fundamental difference presents the first challenge in 

applying control theory to create systematic methods for making trustworthy deci

sions for supporting profitable precision crop productions. 

The second major challenge is making the collected data observable as discussed 

in the text, and the development of some reliable and robust yield prediction tools, 

which could offer a solution to this problem. The ability to predict corn yields based 

on collectable production-related system parameters data, such as soil property, plant 

morphology, and weather data, would provide a useful tool to utilize control theory 

in making reliable precision crop production decisions. The lack of such models  

is one of the obstacles preventing PA production from being effectively adopted. 

Owing to the attribution of collected data to various fields of sciences and technolo

gies, a transdisciplinary study could be pivotal in developing such models. 

The last, but not the least, major challenge is the uncertain controllability of the 

system as discussed in the text. Such uncertainty could be mainly attributed to the 

numerous factors that can influence the response of crop growth to resource inputs, 

and to the timing of applying such inputs. The application of data fusion, a process of 

integrating multiple data sources for obtaining more accurate and robust information 

to gain a more confident estimation of responses to certain inputs within a definite 

time window, is a possible approach to solving this problem. However, finding the 

solution would require transdisciplinary research. 
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5.1  INTELLIGENT MACHINE DESIGN FRAMEWORK 

An “intelligent machine” can be defined in a variety of ways. One line of thought is 

that an intelligent machine is one that exhibits the same type of behavior as a human in 

the same context. Such a definition requires attributes such as reasoning, perception, 

learning, control, and supervision to be present for machines classified as intelligent 

(Jain et al., 2007). Another line of thinking results in a more functional definition: an 

intelligent machine is one that achieves a particular goal in the context of uncertainty 

and variability (Rzevski, 2003; Jarvis and Grant, 2014). This definition has a lower 

threshold for a machine to be considered intelligent. Probably almost any automated 

machine in agriculture would fit this definition because of the high uncertainty and 

variability associated with agriculture. The current technology level of agricultural 

machines is somewhere in between machines being automated, since they can repeat 

specific tasks with a decreasing requirement of human intervention, and being intel

ligent with higher-level behavior than just doing specific tasks repeatedly. 

Automated agricultural machines have a long history of development. Much 

progress was made during the 1970s when electronics for monitoring and control 

was introduced to agricultural machines. However, the most significant advance 

toward machine autonomy started in the 1990s when precision agriculture (PA) 

became the key driver for developing more intelligent machines. PA requires inten

sive management of spatial and temporal variability of fields. Therefore, automated 

or autonomous operation of machines becomes necessary. As an example, variable-

rate application of inputs, one of the major PA practices, needs the application rate 

to be changed on-the-go and sometimes within every square meter of a field. Manual 

operation of the machine and its control is infeasible. Thus, automatic steering and 

map-based rate control have to be implemented on the machine. Use of small and 

smart machines (robots) is desired for many PA practices, such as soil sampling, crop 

scouting, site-specific weed control, and selective harvesting. Robotic applications 

are not only desirable but are also more economically feasible than conventional 

systems for some agriculture applications (Pedersen et al., 2006). 

In building on the current state of technology toward machines that are more 

intelligent, conceptual frameworks have been developed to categorize the required 

technologies for intelligent agricultural machines. Some authors have thought of 

these categories as a set of building blocks for agricultural machines (Reid, 2004). 

However, an alternative framework with different technology layers naturally depen

dent upon one another may be helpful. In this chapter, a framework, consisting of 

four layers that tend to build on each other, will be used (Figure 5.1). These layers 
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Mission planning 

Navigation control 

Perception 

Hardware architecture Software architecture 

Localization 

Implement control 

Machine supervision Machine behavior layer 

Machine control layer 

Machine awareness layer 

Machine architecture layer 

Condition monitoring 

FIGURE 5.1  A multilayer design framework for intelligent agricultural machines. 

are, starting from the bottom, (1) machine architecture, (2) machine awareness, (3) 

machine control, and (4) machine behavior. 

At the lowest level, the machine’s system architecture, consisting of both hard

ware and software, must be in place to build the higher-level layers of an intelligent 

machine. Since the machine must interact with the physical world, physical hard

ware architecture must be in place. For an intelligent agricultural field machine,  

or field robot, the hardware must enable mobility within the crop field, as well  

as provide the capability to perform field operations in an automated or intelli

gent manner. The hardware architecture must be mechatronic to support intelligent 

operations; that is, be an integration of mechanical, electrical and electronic, fluid 

power, and computational systems. The necessary interconnections between sys

tems must be included to communicate both data and power. Other hardware that 

must be present are the sensors that transduce physical or biological signals into 

electrical signals, and actuators that provide force and motion to interact with the 

crop or the environment. 

Complementary to the hardware architecture, software and communications 

architectures must also be in place so that the development of higher-level layer tech

nology can be built on preestablished software components enabling communication 

and reusing lower-level computational solutions. The ISOBUS standard (ISO 11783), 

for example, has enabled major technological advances in agricultural equipment. 

This standard was released over the period 2007 to present, and has had a major 

impact on the agricultural machinery industry enabling electronic control units 

(ECU) from different manufacturers to communicate with each other and generic 

virtual terminals to serve as user interfaces. The impact of the ISOBUS standard on 

the current state of agricultural automation cannot be overstated. Other examples 

of software architectures include the robot operating system (ROS) and the joint 

architecture for unmanned systems (JAUS), among others, which will be described 

further in Section 5.7. 

The next layer, machine awareness, is built on the machine architecture layer. 

This layer mainly consists of localization and perception technologies. In field robot

ics, localization is often accomplished through the global navigation satellite sys

tem (GNSS) with inertial sensors. However, many agricultural applications require 

the machine to follow existing crop rows. In this case, machine localization using 
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relative position sensors has advantages. Included in this localization sublayer are 

sensor fusion methods enabling more robust localization through complementary 

sensors. Sensor fusion can extend localization when one of the sensor signals is lost 

and can improve localization accuracy when various error sources exist from any 

single sensor in the system. 

Before a machine can be classified as intelligent, it must perceive its environment 

to carry out its tasks. The primary goal of machine perception is machine safeguard

ing to ensure safe operation of the machine. Obstacle detection, recognition, and 

avoidance are typical examples in machine safeguarding. Perception algorithms and 

strategies are built on top of the perception sensors in the hardware architecture to 

achieve safeguarding functions. 

Agricultural machines are designed to accomplish field operations such as till

age, seeding, fertilizer and chemical applications, cultivation, and harvest. During 

these operations, the machine must interact with crop, soil, field topography, and 

weather conditions. Thus, for machine intelligence, perception systems must support 

machine awareness of these factors. Because agricultural machines are operated in 

unstructured environments and interact with highly variable bioproducts, perception 

system development is challenging. Section 5.3 describes different perception sen

sors and sensor selection. 

Another aspect of machine intelligence needing consideration is the condition 

of the machine itself, which to increase machine autonomy, must be monitored. In 

a human-operated machine, the operator is not only controlling the operation of the 

machine, but also monitoring the machine through visual, audio, or vibration cues to 

ensure that the machine is functioning correctly. Thus, machine health awareness is 

necessary, along with machine supervision. Section 5.4 outlines possible approaches 

to machine health awareness. 

Once the machine is aware of its location, environment, and health, the machine 

control layer must be in place to navigate the vehicle through the field and to control 

the implements to accomplish the field operations. Navigation control of agricultural 

machines is highly developed and has progressed through several generations of 

automatic guidance technologies as applied to conventional agricultural vehicles and 

implements. However, for smaller, next-generation field robots, research questions 

exist since several vehicle platforms provide additional degrees of mobility freedom, 

through independent four-wheel steering (4WS) and four-wheel drive (4WD), that 

can be utilized for novel navigation control strategies (see Section 5.6). 

Implement control has also been implemented commercially for various machine 

operations. For example, in the case of liquid chemical application, chemical appli

cation rate control was first developed and commercialized in the late 1970s, upon 

which variable-rate application systems were developed in the 1990s. Since that time, 

more and more aspects of machine operations are controlled such as individual spray 

nozzles, boom sections, boom height, planter row unit, plant population, harvester 

feed rate, and harvester header height. More details are provided in Section 5.6. 

The highest layer of the design framework, machine behavior, includes mission 

planning and machine supervision. Mission planning includes the optimization of 

vehicle or implement path based on criteria such as the shortest time to accomplish 

a given field operation. Some mission planners will also optimize machine functions 
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associated with the vehicle path, such as vehicle speed, implement position, and 

power-take-off (PTO) speed. Mission planning can be accomplished off-line prior 

to mission execution, or it can be done on-line, leading to adaptations of the mission 

based on new field and crop condition information being perceived during mission 

execution. Examples of mission planning include path planning, vehicle routing, and 

machine coordination, are further described in Section 5.5. 

Machine supervision is similar to mission planning but focuses more on machine 

conditions and behaviors required in reaction to unforeseen events. In response to 

machine conditions in which either machine or environmental states are outside 

expected conditions, machine supervision will control the machine to a fail-safe 

condition. For example, if an autonomous vehicle detects a moving obstacle in front 

of its planned trajectory, the machine supervision algorithm will decide if the vehicle 

should stop, wait, or take a detour. As a first step of machine supervision, human 

operators will monitor the automated machines, but with continued development, 

increasing amounts of machine supervision will be done via higher-level intelligent 

supervisory control. 

In addition to the technology layers mentioned above, this chapter also discusses 

classification of intelligent machines (Section 5.2), examples of autonomous vehi

cles and field robots (Section 5.8), and summary and discussion of future directions 

(Section 5.9). 

5.2  INTELLIGENT MACHINE CLASSIFICATION 

Machine intelligence and automation technology found in agriculture are varied. 

Thus, to engage in a focused discussion about an intelligent machine, one must find 

a way to classify various machine systems. At the highest level, intelligent machines 

in agriculture can be classified according to the agricultural production systems in 

which the machines are used. Agricultural production systems include irrigation sys

tems, animal facilities, fruit production systems, greenhouses, and field machinery 

(Figure 5.2). 

In this classification scheme, the automation of irrigation systems is used to 

improve water use efficiency. Generally, automation technologies will site-specifi

cally vary the rate at which water is applied to the crop based on current crop and 

soil status. This irrigation automation strategy is called variable-rate irrigation and 

is accomplished by either varying the speed that the irrigation system is passing over 

the crop or by controlling the flow rate of nozzles (LaRue, 2014). 

Automation technology is also used in animal facilities. One application is main

taining indoor animal environmental variables such as temperature, humidity, and 

gas concentrations at levels that maximize feed conversion efficiency and maintain 

animal health and welfare (Purswell and Gates, 2013). Feed distribution systems can 

also be automated to control and monitor feed for individuals or groups of animals 

(Aerts et al., 2003; Frost et al., 2003; Tu et al., 2011). Robotic or automatic milk

ing systems (AMS) also fit in this automation class. AMS automatically harvest the 

milk from dairy cows without the need for human labor traditionally associated with 

milking. These systems are being adopted rapidly in North America and Europe 

(de Koning and Rodenburg, 2004; Lely, 2014) and are changing dairy production 
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Irrigation systems Greenhouse 

Applications 

Animal facility Fruit production 
Guidance GPS 
controller receiver 

EH steering system 
Field machinery 

FIGURE 5.2  Intelligent machine classification based on the production systems. (From 

Edan, Y., S. Han, and N. Kondo. 2009. Automation in agriculture.  Springer Handbook of  
Automation, 1095–1128. With kind permission from Springer Science+Business Media.) 

in many ways—including the role of the farmer, dairy management systems, and 

farmer and dairy cow relationships (Butler et al., 2012). 

Greenhouse plant production systems, another class of agricultural automation 

systems, have numerous environmental variables that can be controlled to optimize 

plant growth and health. These variables include air temperature, relative humidity, 

light intensity, and CO2 concentration. Many control strategies exist that may use 

artificial intelligence and physiological plant growth models (Ferentinos, 2006). In 

this class, we could also include robots designed for greenhouse use. 

In developed countries, because of limited labor availability and high labor costs, 

automation and mechanization technologies are being rapidly developed and adopted 

for fruit production in orchard crops. Particular cultural practices developed include 

automated pruning and hedging systems, fruit thinning, precision chemical applica

tion, and harvesting. Because robotic fruit harvesting is particularly challenging yet 

has potential for substantial impact to fruit production, research and development 

efforts have been undertaken in this area. Technologies have also been developed to 

monitor tree crops (Burks et al., 2013). 

The last major class in this high-level classification is the automation for field 

crop production, including row crops such as corn, soybeans, and cereal grains. This 

class has seen much development as it was one of the early foci of PA research, par

ticularly in North America and Europe. Characteristic of this type of agriculture are 

large machines and large field sizes. 

Within this high-level classification scheme, we can further classify automation 

technology according to the machine or operation being automated. Many automa

tion technologies that have been commercialized and made available to agricultural 
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producers are in this category. These technologies are found in tractors and imple

ments, combine harvesters, chemical applicators including sprayers, and planters. 

The main focus of this chapter is on machine intelligence as applied to field crops 

and orchard crops. Technologies that are currently applied to agricultural machines, 

which generally tend to be larger equipment, will be surveyed as well as field robots, 

which are generally at the research stage of development. A main consideration for 

the development of machine intelligence for field and orchard crops is the semi-

structured or semicontrolled nature of the operating environment, as well as the 

crop, which presents many challenges to the development of this type of technology. 

Because of these challenges, the automation of machinery in agricultural fields has 

been, until recently, a slow evolution, starting first with the automation of machine 

function on conventional field machinery. 

5.3 PERCEPTION SENSING TECHNOLOGIES 

Human perception is the organization, identification, and interpretation of a sensa

tion in order to form a mental representation (Schacter et al., 2011). In this definition, 

two aspects of human perception are involved: sensing of the environment (sensa

tion) and interpretation of the sensory information (mental representation). A con

ventional machine requires the human operator to perform both of these perception 

tasks to ensure its safe operation in the field. An intelligent machine, however, is 

equipped with sensors and processors to achieve some level of perception to reduce 

human intervention or to even completely eliminate the human operator. 

In general, a perception system for an intelligent mobile machine requires one 

or more of the following capabilities: localization (where the machine is relative to 

the world), object recognition (what is around the machine), navigation and collision 

avoidance (how the machine can safely interact with the environment), and learn

ing and inference (how the perception system can solve new problems). Abundant 

literature relates to these topics. For intelligent agricultural vehicles, navigation and 

safeguarding (obstacle detection) are two of the most important tasks in field opera

tions. This section discusses perception sensors and their selection for agricultural 

applications primarily in vehicle navigation and vehicle safeguarding. 

5.3.1 PERCEPTION SENSORS 

Human beings receive stimuli detected by our five senses: sight, hearing, taste, smell, 

and touch. Accordingly, perception sensors have been developed in each of these  

sensing categories, for example, vision sensors as sight, acoustic sensors as hearing, 

and tactile sensors as touch. However, modern perception sensors can respond to 

environment stimuli in the electromagnetic spectrum at a much wider range than a 

human being can (Figure 5.3). Each type of perception sensor in the electromagnetic 

spectrum will be briefly discussed below. 

5.3.1.1 Monocular Vision 
Although cameras were invented and used in photography centuries ago, their indus

trial application as perception sensors did not start until the 1960s and 1970s when 
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Larry Roberts and David Marr undertook breakthrough research at MIT’s Artificial 

Intelligence Laboratory. Computer vision, or machine vision, the science of teaching 

a computer how to identify a physical object in its surroundings, was born during that 

time. In the 1980s, computer vision took off and saw great expansion with its mass 

adoption by semiconductor manufacturers. Presently, two technologies can be used 

for the image sensor in a camera: charge-coupled device (CCD) and complementary 

metal–oxide semiconductor (CMOS). To produce a color image, a filter in front of 

the image sensor allows the sensor to assign color tones to each pixel. Traditionally, a 

CMOS camera is less expensive and consumes less power, but a CCD camera produces 

better image quality. In recent years, however, these differences have disappeared. 

The success of a perception application using image sensors is heavily dependent 

on image processing algorithms. Grayscale machine vision algorithms have been 

widely investigated (e.g., optical flow, motion detection, and pattern recognition), 

but at best, the results have been mixed. The main difficulty is that computer vision 

algorithms are almost all brittle; an algorithm may work in some cases but not in 

others (Huang, 1996). 

Agricultural applications of computer vision were first studied in the late 1980s. 

Typical applications include guiding a tractor for row crop cultivation, or guiding a 

combine for harvest operation. In such applications, finding guidance information 

from row crop structure is the key to achieving accurate control of a vehicle. A num

ber of image processing techniques have been investigated to find the guidance line 

(directrix) from row crop images. As examples, Reid et al. (1985) developed a binary 

thresholding strategy using Bayes classification to effectively and accurately seg

ment crop canopy and soil background for cotton at different growth stages. Gerrish 

et  al. (1985) concluded in that the combination of noise filtering, edge detection, 

thresholding, and rescaling was the most promising technique. Image analysis using 

the Hough transform to find crop rows was reported in several studies (Marchant 

and Brivot, 1995; Marchant, 1996). Billingsley and Schoenfisch (1997) reported 

on a vision guidance system relatively insensitive to additional visual “noise” from 

weeds, while tolerating the fading out of one or more rows in a barren patch of the 

field. They showed their system is capable of maintaining an accuracy of 2 cm. In 

terms of vehicle safeguarding using a monocular vision system, the most successful 

application is perhaps the lane departure warning system in the automobile industry 

(e.g., Mobileye, 2015; TRW, 2015). No literature has been reported for agricultural 

vehicle safeguarding. 

A monocular vision system can provide rich information, including color and 

shape of objects. The cost is low. It can be easily integrated onto a vehicle due to 

the small footprint. However, it is not robust to illumination variance and cluttered 

background. 

5.3.1.2 Stereo  Vision 
Stereo vision may be passive or active. In a passive stereo vision system, two or 

more cameras are used to acquire different images of the same object from slightly 

different viewpoints in space. The depth information of the object can be calculated 

by the differences in these monocular views of the scene and by the geometry of the 

imaging system. In an active stereo vision system, one of the cameras is replaced by 
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a projector, which projects structured light, such as parallel lines and grids, onto the 

object surface. The structured light is distorted by the object geometry, and a new 

distorted pattern is formed. An object’s three-dimensional (3D) shape can be recov

ered by analyzing images containing the distorted light pattern. Active stereo vision 

has been successfully used for applications in constrained indoor environments such 

as industrial inspection. However, the short detection range and the vulnerability to 

strong ambient light make it hardly useful in outdoor environment. 

The most challenging task in using stereo vision to determine the 3D depth infor

mation of objects is stereo correspondence matching—finding pairs of matched 

points corresponding to a single point on the 3D object. Stereo matching is one of 

the most active research areas in computer vision. Two general methods for ste

reo matching are intensity-based and feature-based. The intensity-based approach 

attempts to establish correspondence by matching pixel intensities of the image pair. 

With the feature-based approach, features such as edges, corners, lines, and curves 

are first extracted from the images, and the matching process is applied to these fea

tures. The selection of the best matching algorithm depends on the applications but 

unfortunately most algorithms are not robust for outdoor applications. 

Several studies of stereo vision for agricultural vehicle navigation have been 

reported. For example, Kise et al. (2005) developed a stereo vision-based crop row 

detection system to automatically navigate a tractor in a soybean field with a lateral 

deviation of less than 0.05 m at speeds up to 3.0 m/s. They used stereo images to 

create an elevation map (i.e., a map of crop height). Since the search of the guidance 

parameter was based on the elevation map, not on color or intensity, their algorithm 

was robust under weedy field conditions. Wang and Zhang (2007) developed a stereo 

vision-based trajectory tracking method for automated navigation of an agricultural 

vehicle in an unstructured environment based on 3D feature tracking and motion 

estimation. Recently, Lin et al. (2014) reported an object tracking and collision avoid

ance system utilizing a stereo vision system. For vehicle safeguarding applications, 

Wei et al. (2005) tested the safeguarding capability of a stereo vision system using 

a person standing in front of a vehicle as the potential obstacle. Obstacle detection 

in short-ranges (less than 12 m) was repeatable. In other research, Rovira-Más et al. 

(2007) showed that, in real-time applications, ranges up to 15 m can be sensed with 

acceptable accuracy using compact off-the-shelf binocular stereo cameras. 

A stereo vision system has an advantage over a monocular vision system. It more 

effectively represents distance, size, and spatial relationships between different 

objects in the camera’s field of view. It is less sensitive to changing external envi

ronments because it relies on size, shape, and distance, which are invariant under 

lighting changes. However, the lack of robust stereo matching algorithms and the 

high computation cost requirement have historically made stereo vision costly and 

impractical. Recently, low-cost stereo processors are more available on the market. 

Stereo vision systems are expected to replace monocular vision systems in the future. 

5.3.1.3 Laser, Ladar, and Lidar 
A laser is a device that emits light through a process of optical amplification based 

on the stimulated emission of electromagnetic radiation (Gould, 1959). A laser sys

tem used for perception purposes is often based on the time-of-flight (ToF) principle. 
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The ToF method measures the time for the electromagnetic wave to travel to a target 

and back. The distance (range) is calculated as half of this time multiplied by the 

velocity of the wave. When a laser is used as the probe, the device is called Ladar or 

Lidar, which stands for laser detection and ranging or light detection and ranging, 

respectively. The light is short-pulsed for time measurement. 

Ladar or Lidar are also called laser range finder. A laser range finder can only 

measure the distance to a single point on the object. For 3D object recognition and 

object modeling, the laser beam is often rotated, either by mechanical or by optical 

methods, to achieve two-dimensional (2D) or 3D range measurements. Those sys

tems are called laser scanners or scanning lasers. One of the commonly used scan

ning laser brands in agricultural applications has been SICK (SICK AG, Waldkirch, 

Germany), primarily due to their performance and affordable cost. For example, 

a SICK outdoor scanning laser range finder, LMS151, is a long-distance measure

ment type series (at 75% reflectance) with a 50 m maximum measuring length. On 

the high end, Google has been using a roof-mounted Lidar (HDL-64E, Velodyne 

Acoustics, Inc., Morgan Hill, California), which spins a unit containing 64 fixed-

mounted lasers to capture a full 360° horizontal field of view. However, agricultural 

use of this sensor has not been reported due to its high cost. 

Lidar has become well recognized in terrain model building since the late 1990s. 

It has advantages in measuring surfaces with accuracy and density (Ma, 2005). In 

agricultural applications, Ryo et  al. (2004) used a laser scanner to automatically 

guide a robotic gator in an orchard. They concluded that control by the laser scanner 

was more accurate and stable than control by a global positioning system (GPS) and 

an inertial measurement unit (IMU). Lateral and heading error were 0.1 m and 0.7°, 

respectively. 

The major strengths of Lidar include accurate 3D shape information, accurate 3D 

position, and performance independent of varying illumination. However, Lidar does 

not produce color information, is dependent on weather conditions, and is expensive. 

5.3.1.4 Radar 
Radar stands for radio detection and ranging and uses radio waves in the range of 

3 MHz to 110 GHz (Figure 5.3) reflected from the surface of an object to determine 

the range, direction, and speed of the object. Radar signals are reflected especially 

well by materials of considerable electrical conductivity—especially by most metals 

and by wet ground. Radar can provide accurate distance information but no shape 

information. As such, it can be primarily used for object detection but not object 

identification. It is well suited for safeguarding applications. 

Recent advancement in silicon germanium (SiGe) technology has made the high-

frequency millimeter-wave applications practical. Automotive radar (77 GHz) is 

now readily available at a low cost. The 77 GHz sensor may soon be integrated into 

agricultural vehicles for safeguarding applications. 

5.3.1.5 Ultrasonic  Sensor 
Ultrasonic sensors work on the ToF principle similar to Lidar, but they use sound 

waves at a frequency just above the range of human hearing (>20 kHz, Figure 5.3). 

Most ultrasonic sensors operate at frequencies between 40 and 250 kHz. Because 
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the speed of sound travels much slower than the speed of light, an ultrasonic range 

sensor has a much shorter object detection range than Lidar. The detection range is 

typically less than 10 m. 

Ultrasonic sensors were studied to detect a moving object in the vicinity of agri

cultural machinery in real time under an outdoor environment (Guo et al., 2002). 

They were also used to measure the relative position between tree canopies and 

a vehicle for tractor navigation in an orchard (Iida and Burks, 2002). Because the 

speed of sound changes due to variations in air temperature and humidity, ultrasonic 

sensor measurement errors tend to be large. Thus, ultrasonic sensors alone may not 

be a good choice for vehicle navigation and safeguarding. However, they can be used 

as complementary sensors due to their low cost. One potential application is using an 

ultrasonic sensor array to safeguard a slow-moving automated vehicle. 

5.3.1.6 Active 3D Range Camera 
Active 3D range cameras share several traits with both scanning lasers and cameras. 

Like lasers, they measure distances with modulated light based on the ToF principle. 

Similar to cameras, distance measurements are obtained with a 2D array of pixels 

without any moving parts. The photonic mixer device (PMD) is one of the promis

ing technologies for active 3D range cameras (Schwarte et al., 1998; Xu et al., 1998; 

Ringbeck and Hagebeuker, 2007). Recently, PMD-based cameras have been developed 

that are compact, affordable, and capable of capturing reliable-depth images directly 

in real time. The technology has been successfully demonstrated for tracking people 

in surveillance applications (e.g., Gokturk and Tomasi, 2004; Grest and Koch, 2007). 

Active 3D range cameras are a competing technology with stereo vision-based 

surface reconstruction. Under optimal conditions, the PMD system outperformed 

the stereo vision system in terms of achievable accuracy for distance measurements 

(Beder et al., 2007). Agricultural applications of PMD cameras include classifica

tion of plants (Klose et al., 2009) and mapping of apple trees for automatic pruning 

(Adhikari and Karkee, 2011). However, no research was found investigating PMD 

cameras for vehicle navigation and safeguarding in agriculture. 

5.3.2 SELECTION  OF PERCEPTION SENSORS 

All the perception sensors mentioned above have been studied for agricultural appli

cations. However, no single type of sensor has been shown to have clear advantages 

or disadvantages over the others. Compared with indoors manufacturing applications 

or even outdoors automobile applications, agricultural field operations are exposed 

to a much more challenging environment for perception sensors. Many factors need 

to be considered in the selection of perception sensors in agriculture. The following 

are some of the major performance and cost requirements for perception sensors. 

5.3.2.1 Range 
The requirement for range, or detection distance, depends on the type of application. 

In the case of perception-based vehicle navigation, only a small look-ahead distance 

is needed for straight crop rows, but a larger look-ahead is desired for curved rows 

at higher speed. All the sensors discussed above should meet the range requirement 
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for navigation applications. For vehicle safeguarding, a safe distance—the distance 

from the vehicle to the detected obstacle—is a function of vehicle speed, system 

response time, and vehicle stopping distance. Gray (2002) stated that the obstacle 

detection sensor used on the tractor must have a maximum detectable range of at 

least 15 m. Most of the sensors discussed above, except the ultrasonic sensors, can 

meet this range requirement. 

5.3.2.2  Robust to Lighting 
Unlike manufacturing operations under controlled environments, agricultural opera

tions are normally performed under all kinds of ambient lighting conditions, such as 

dim light in the early morning and evening, bright sunlight during the day, overcast 

sky, partial clouds, or even complete darkness during night operations. Radar and 

ultrasonic sensors are not affected by lighting conditions since they use radio and 

ultrasonic waves, respectively. On the other hand, vision sensors (mono and stereo) 

are highly sensitive to changing lighting conditions since they operate in the visible 

light spectrum, which is directly affected by the ambient lighting. 

5.3.2.3 Robust to Dust 
Agricultural machinery is often exposed to very dusty conditions in field operations. 

Almost all the perception sensors based on the ToF principle will return some false 

“echoes” from dust particles. If the sensor is able to penetrate those dust particles, 

it is more robust to dust. The dust penetration capability of a sensor depends on the 

type of wave, power, etc. In general, vision sensors are the most robust sensors to 

dust, if an appropriate image processing algorithm is implemented. Lasers are most 

sensitive to dust. 

5.3.2.4 Spatial Resolution 
Spatial resolution refers to the size of the smallest possible object or feature in space 

that can be detected and identified. For image sensors, the spatial resolution is related 

to the pixel size of the imager. For Lidar sensors, the spatial resolution is dependent 

on the point density, which is a function of the scanning frequency. The spatial reso

lution of the system is also dependent on the instantaneous field of view (IFOV) of 

the sensor. Thus, an image sensor mounted at a lower height will give a better spatial 

resolution of the ground surface than the same sensor mounted higher. Monocular 

vision provides the best spatial resolution, which is very helpful in applying feature-

based algorithms for object identification. Stereo vision and Lidar are often used 

in parallel with monocular vision through point cloud rendering to provide better 

object identification capability. Both radar and ultrasonic sensors have the lowest 

spatial resolution. They are commonly used only for object detection, not for object 

identification. 

5.3.2.5 Maintenance 
Reliability is essential for perception-based applications. Sensor performance will 

quickly degrade when exposed to harsh agricultural environments, and frequent sen

sor maintenance is required. The ease of sensor maintenance is another consider

ation in selecting a perception sensor. A sensor with an inherently stable design 



 

 

 

 

  

 

 

  

Sensor Monocular 3D Range 
Capability Vision Stereo Vision Lidar Radar Ultrasonic Camera 

Range Average + Average − Good Good Poor Average − 

Robust to lighting Average − Average + Good Good Good Good 

Light dust Good Good Average Good Average + Average + 
penetration 

Heavy dust Poor Poor Poor Good Poor Poor 

penetration 

Spatial resolution Good Average Average + Poor Poor Average − 

Maintenance Good Poor Poor Good Good Average 

Cost Good Average Poor Average Good Poor 
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will require less maintenance. Monocular camera, radar, and ultrasonic sensors all 

require low maintenance due to their small package size and simple design with no 

moving parts. Vibration may cause changes in the relative orientation between two 

stereo pairs leading to frequent calibration of stereo vision sensors. Lidar sensors 

have internal moving parts, which are vulnerable to sensor failure—making it hard 

to maintain long-term operation in agricultural fields. 

5.3.2.6 Cost 
The range of costs for perception sensors is wide. Cost ranges from over $100,000 for 

a high-end Lidar to under $100 for a monocular vision sensor. Cost is often a limit

ing factor for agricultural perception applications. The cost target depends on the 

application, and is often defined by the ratio of the sensor cost to the machine cost. 

A high-end machine such as a large tractor can tolerate a higher cost for the add-on 

perception system. 

Table 5.1 summarizes the ratings for each of the six types of perception sensors. 

These ratings can be used for the selection of particular sensors for specific appli

cations. The conclusion is that no single type of perception sensor can meet all the 

requirements of agricultural operations. Compromise is required to find a sensor 

that can meet most of the requirements. Another approach is to use multiple low-cost 

sensors, either redundant or complementary to each other, in a sensor-fusion system. 

5.3.3 CHALLENGES  AND NEW DEVELOPMENT 

Since the late 1970s, industrial robots have been widely used in manufacturing oper

ations for fixed automation. Such robots can perform repetitive tasks in a carefully 

controlled environment, and the perception needs for these robots can be kept to a 

minimum. Machine automation in agriculture is significantly different from automa

tion in the manufacturing industry. An automated agricultural machine needs the 

ability to sense its world and change its behavior on the basis of what it perceives. 

The workspace of agricultural machinery is typically a large open field, unstructured, 

TABLE 5.1 
Perception Sensor Ratings 
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and with large topographical change. Numerous types of obstacles in the workspace 

are often unknown a priori and hard to classify. In addition, agricultural machinery 

is exposed to harsh environmental conditions, such as extreme weather, extreme 

temperature, dust, rain, and vibration. As such, operating agricultural machinery 

without human operators becomes extremely difficult. Agriculture has been one of 

the last industries to use robotics and intelligent machines mainly because of the lack 

of machine perception capabilities. 

Machine vision is perhaps the most promising technology for agricultural percep

tion applications because it can provide a vast amount of data at a relatively low cost. 

However, many challenges exist in the interpretation of these data. To derive shape 

information from images, the commonly accepted bottom-up framework developed 

by Marr (1982) is being challenged, as it has limitations in speed, accuracy, and 

resolution. A new approach, called purposive vision (Aloimonos, 1992), has been 

suggested. The purposive vision paradigm does not attempt to generate a complete, 

detailed, symbolic 3D model of the environment. Rather, it is task-oriented and 

focuses only on the parts of the environment relevant to its task. Purposive vision 

complements general machine vision techniques with domain-specific information. 

Collision avoidance for autonomous vehicle navigation is an appropriate applica

tion of the purposive vision approach because precise obstacle shape description is 

unnecessary. 

Future growth in machine vision is likely with smart camera technology. A smart 

camera is a stand-alone vision system with a built-in image sensor and processor. 

It is capable of extracting application-specific information from captured images, 

along with generating event descriptions or making decisions that are used in an 

intelligent and automated system (Belbachir, 2010). Stereo vision capabilities can 

also be built in the smart camera due to its processing power. Smart cameras have 

just recently become small and affordable enough to justify their use for agricultural 

machine automation. Several commercial applications of smart cameras in agricul

tural machinery have already been developed. 

Autonomous machines cannot be commercialized without proper safeguarding. 

Safe operation of agricultural machines is the single most critical requirement. Since 

no single type of perception sensor can meet all the requirements of agricultural 

operations, development of sensor fusion systems for machine perception will con

tinue to be a major effort. Sensor fusion developments include not only the selection 

of multiple low-cost sensors, but also appropriate sensor fusion algorithms. 

5.4 MACHINE HEALTH AWARENESS 

With any machine, with or without intelligence, failures or breakdowns will occur. 

Thus, monitoring machine conditions may lead to preventative maintenance before 

a catastrophic failure occurs or corrective action after a malfunction has occurred. 

Because of increasingly higher-level complexity with automated machinery, it has 

become more difficult for human operators to detect faults. In addition, accompa

nying machine automation may be lower-skill operators without the background 

knowledge to manually diagnose machine problems. Automation technology can 

also create conditions where the operator is more isolated from the working of the 
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machine, either by physical isolation (e.g., a more comfortable cab with climate con

trol and more sound isolation) or by greater distraction as the operator’s attention 

has moved to other farm management tasks such as marketing produce or making 

decisions about input purchases. 

As agricultural machinery becomes more automated, machine condition moni

toring, along with fault detection and diagnosis, also needs to be more automated, 

although it can still have some reliance on human intervention when a human operator 

is present. For driverless, autonomous agricultural machines, machine intelligence 

to monitor machine health must be in place to produce machine health awareness 

with no human assistance—a considerable requirement for the development of these 

machines. Little attention has been given to the automation of condition monitor

ing and fault detection system in agricultural machinery (Craessaerts et al., 2010; 

Khodabakhshian, 2013). 

Machine health awareness requires a high degree of intelligence, perhaps higher 

than all other requirements for an intelligent machine. At the heart of machine health 

awareness are technologies often referred to as condition monitoring systems or fault 

detection and diagnosis systems. Condition monitoring is typically part of an overall 

maintenance strategy for a process, machine or machine system, which will involve 

a human manager. Condition monitoring uses signals from a machine acquired with 

sensors to provide some indication of the condition of machine components. Based 

on these signals and their changes over time, with some signal processing and pat

tern recognition analysis, managers can make decisions about what maintenance 

interventions should be taken and when they should be scheduled. 

As shown in Figure 5.4, implementing a machine health awareness system for an 

autonomous machine requires several layers of technology, which can be structured 

in a format similar to the intelligence machine framework presented in Section 5.1. 

For machine health awareness, there must first be a hardware layer consisting of sen

sors that are measuring physical signals known to be related to machine component 

condition. Several sensing modes have been used for condition monitoring and will 

be described in greater detail below. 

FIGURE 5.4 Machine health awareness technology will require at least these five layers of 

technology as a part of any autonomous, driverless system. 
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Second, the signals from the sensors must be cleaned to remove outliers and then 

processed to extract the features that are correlated to machine component condi

tions. Next, fault detection applies automatic pattern recognition processes to deter

mine if a fault has occurred in the system. Generally, this step involves finding a 

deviation from patterns associated with normal operation. Once a fault has been 

detected, it must be diagnosed to identify what the fault is and what might have 

caused it. 

The last layer might be the most important for an autonomous machine, that is, 

to decide what action should be taken next and then execute it. Several possible 

actions can be taken when a fault occurs, including (1) initiate a graceful shut

down and remain at current position, (2) stop operations and move to a designated 

location for maintenance, (3) stop operations, alert remote human supervisor for 

further instructions, or (4) continue operations, and send a warning message to 

human supervisor. Blackmore et al. (2002) identified six safety modes similar to 

those listed above. 

Khodabakhshian (2013) surveyed the sensing modes found in the literature for 

machine condition monitoring and discussed those used for agricultural machines. 

Temperature measurement can be used to detect increased friction in bearings that 

are moving into a failure mode, but it is not typically applied to agricultural machines. 

Dynamic monitoring includes analysis of vibration signals or acoustic signals associ

ated with rotating machines and relating vibration signatures to wear and machine 

life. While substantial work has been done in this area for rotating machinery in 

general, with ISO standards developed for it (ISO 13373-1:2001; ISO 17359:2003), 

not many efforts specifically for agricultural machinery have been reported. 

Exceptions include Heidarbeigi et al. (2009, 2010) who sought to diagnose faults in 

a Massey–Ferguson gearbox with the power spectral density of the vibration signals. 

Another approach to condition monitoring is monitoring internal wear debris or 

particle contamination of oil. While light blockage particle sensors are available, they 

are typically not applied directly to off-road machines because of cost and robust

ness limitations. Typically, this approach involves sampling oil from the machine 

being monitored and oil analysis done in a laboratory setting. This approach does not 

lend itself to automated machine health awareness. However, recent investigations 

into dielectric spectroscopic sensing technology for oil contaminants have produced 

an on-line sensor to be used continuously during machine operation (Kshetri et al., 

2014). This type of robust sensor technology could be applied to intelligent agricul

tural machines. 

Another promising approach to sensing the condition of a machine is to monitor 

machine performance variables, such as power consumption or hydraulic pressure, 

searching for anomalies in those dynamic variables. Craessaerts et al. (2010) took 

this approach applying self-organizing maps and neural networks to detect failures 

in a New Holland combine harvester. 

The application of these technologies to intelligent agricultural machines has limi

tations. They are more easily applied to rotating machinery such as planters, engines, 

and grain harvesters but not suitable to machines involving lateral motion or limited 

rotational motion. They are also better suited for more controlled machine operat

ing environments found in factories rather than in fields. While some agricultural 
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machine monitoring technologies exist (e.g., planter monitors and combine yield 

monitors), development has focused typically on machine performance in affecting 

agronomic factors such as plant population or harvester crop loss. Little has been 

done to more broadly monitor agricultural machine health. 

For autonomous operations, the correct operation of the implement must also 

be monitored. If anomalies occur, the machine must self-correct or transition to an 

appropriate fail-safe mode, and the remote operator must be notified to take further 

corrective action. A good example of this type of technology is planter monitors in 

which, if a seed tube is plugged, the planting operation must be stopped immediately 

and corrected. 

New technologies may be on the horizon to more broadly monitor the health 

of agricultural machine implements. For example, the German auto supplier 

Continental AG (Hanover, Germany) recently introduced a surround view system, 

ASL360, to create a fully 360°, 3D bird’s-eye view of the vehicle and its surround

ing local environment. The system consists of four fisheye cameras mounted on the 

front, rear, and sides of a vehicle and a special processor that stitches four images 

into a single 3D image. Although the system was originally intended for automotive 

applications such as assisted parking and safe maneuver, it can be easily adapted for 

agricultural applications (Continental AG, 2013). 

5.5 MACHINE  BEHAVIOR 

5.5.1 ROBOTIC BEHAVIOR 

For a robot to be considered intelligent, it must exhibit behaviors similar to those 

observed of humans. Some of these behaviors include planning by determining the 

best plan of action to achieve a particular goal and supervision by monitoring the 

work environment and making modifications to the planned actions based on new 

information. 

Blackmore et al. (2007a,b) promoted a structure for defining the behaviors field 

robots need to perform agricultural operations autonomously. At the highest level, a 

field operation is the action that a robot will carry out to meet the needs of a crops’ 

cultural practices. Within an operation, certain tasks must be carried out—either 

deterministic or reactive. Deterministic tasks can be planned before the operation 

starts, are goal-oriented to achieve the objective of the operation, and can be opti

mized to best draw on the resources available. Reactive tasks are foreseen responses 

to uncertain situations that may occur during the operation. They are captured in 

terms of behaviors that the robot should do in response to new situations. For exam

ple, when an unknown obstacle is perceived in the current path of the robot, the robot 

should behave according to the type of obstacle. If a tree is perceived in the path, 

the robot could alter its path to go around it. If an animal is detected in the path, the 

robot might wait until it moves away, or produce stimuli to scare the animal away, or 

stop and seek guidance from a human supervisor. An example deterministic task is 

field coverage where the robot covers a field by navigating through a predetermined 

coverage path. Several examples of intelligent machine behavior, including coverage 

path optimization research, are presented below. 
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5.5.2 OPTIMAL PATH PLANNING 

With trends toward larger field sizes, lower-skilled operators of agricultural machin

ery, and rapid automatic guidance systems adoption, automatic path planning will be 

an important farm management tool for optimizing field efficiencies and minimiz

ing soil erosion. Field coverage is a deterministic task of an intelligent agricultural 

machine; path planning can be applied to both conventional agricultural machines 

with automatic guidance or to autonomous field robots (Oksanen and Visala, 2007, 

2009). The time and travel over field surfaces associated with field operations should 

be minimized within constraints associated with machine characteristics, field 

topography, and field operation-specifics characteristics. To achieve these goals, 

optimized coverage path planning algorithms are needed for both planar surfaces 

and fields with 3D terrain features. 

5.5.2.1 Optimized Coverage Path Planning on 2D Planar Surface 
Research has been done on coverage path planning of planar surfaces, but results  

have some limitations in being applied to agricultural fields. Fabret et  al. (2001) 

framed the coverage path planning problem as a traveling salesman problem (TSP), 

and first chose a “steering edge” that provided the direction to guide successive 

swaths. In the field headland, characteristic points were then collected. Those points 

were connected by lines in the steering direction via an associated graph constructed 

by a TSP solver. It was not clear how the steering edge was chosen. Neural net

works have also been applied to this problem (Yang and Luo, 2004). Their approach 

planned collision-free complete coverage robot paths. The collision-free requirement 

is of low importance, however, for agricultural field coverage planning. Turning cost 

at field edges were not investigated in approach, so it may have limited application 

in agriculture. 

Field decomposition has potential to further improve the efficiency of field 

operations before determining the best path directions in fields, particularly those 

with irregular field boundaries. Field decomposition must take place simulta

neously with the path direction search for cases where the field can be decom

posed into several subregions that can reduce the whole field coverage time. The 

trapezoidal decomposition method has been investigated as an approach to field 

decomposition (Berg et al., 2000). First, a direction was chosen, and lines parallel 

to this direction were drawn through all the field boundary vertices. The field was 

then divided into trapezoids according to these lines. Choset and Pignon (1997) 

explored trapezoidal decomposition for coverage path planning. However, they 

were not clear about how the direction of the trapezoidal decomposition lines was 

determined and if these parallel lines led to the field decomposition that mini

mized coverage costs. 

Determining the best path direction is the main goal of coverage path planning. 

Whole fields can usually be covered by boustrophedon paths (straight parallel paths 

with alternating directions) parallel to the optimal coverage path direction for each 

given field. Several approaches to optimal path direction discovery have been inves

tigated. Following the longest edge of the field is a simple strategy (Fabret et al., 

2001), but it is only suitable for fields with simple convex shapes such as a rectangles. 
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FIGURE 5.5  A coverage path planning in planar field. (a) A top-down trapezoidal decom

position algorithm. (b) A bottom-up approach using prediction and brute-force method. (From 

Oksanen, T. and A. Visala. 2009. Journal of Field Robotics, 26:651–668. With permission.) 

Field boundary irregularities must be considered for general coverage path plan

ning solutions. Oksanen and Visala (2009) explored greedy search algorithms to find 

coverage paths of planar (2D) field surfaces. Their search algorithm iteratively found 

the optimal trapezoidal field decomposition and path direction using a split and 

merge strategy (Figure 5.5). Optimal decomposition was not guaranteed, but they 

demonstrated the important of simultaneous decomposition and direction search 

needed to minimize headland turning cost. 

Jin and Tang (2010) developed an algorithm that optimally decomposed planar 

fields and planned optimized operational patterns (Figure 5.6). Their algorithm used 

a geometric model that represented the coverage path planning problem. The objec

tive function accounted for operational costs, including turning costs and resulted 

from analysis of different headland turns. To reduce the total turning cost, the num

ber of turns is minimized and turns with high operational costs are avoided. Their 

path planner was applied to planar fields with complexity ranging from simple con

vex shapes to irregular polygons with multiple obstacles. Their algorithm produced 

better solutions than farmers’ solutions and showed good potential to improve field 

equipment efficiency on planar fields. 

FIGURE 5.6  Examples of an optimized coverage path planning algorithm based on a head

land turning cost function and a divide-and-conquer strategy for 2D terrains, where the inner 

polygons indicate nontraversable obstacles. (From Jin, J. and L. Tang. 2006. Optimal Path 
Planning for Arable Farming, ASABE Paper Number 061158, ASABE, St. Joseph, MI, USA; 

Jin, J. and L. Tang. 2010. Transactions of the ASABE, 53:283–295. With permission.) 
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5.5.2.2 Optimized Coverage Path Planning on 3D Terrain 
More factors must be considered when optimizing the coverage path over terrain  

with 3D topographic features. The main factors are headland turning, soil erosion, 

and skipped area. Jin and Tang (2011) approached the problem by first developing an 

analytical 3D terrain model with B-splines surface fits to facilitate the computation 

of various path costs. They then analyzed different coverage costs on 3D terrains 

and developed methods to quantify soil erosion and curving path costs of particular 

coverage path solutions. Similar to the planar field approaches, they developed a ter

rain decomposition and classification algorithm to divide a field into subregions with 

similar field attributes and comparatively smooth boundaries. The most appropriate 

path direction of each region minimized coverage cost. 

A “seed curve” search algorithm was successfully developed and applied to sev

eral practical farm fields with various topographic features (Figure 5.7). The 3D 

path planning algorithm performed better on 3D terrain fields compared to the 2D 

planning algorithm. In one field, the 3D planning algorithm generated a result with 

69.5% reduction in estimated soil loss as compared with that of the 2D algorithm. 

Typically, the skipped area was also much smaller. 

5.5.3 OPTIMIZED VEHICLE ROUTING 

After optimal field decomposition and coverage path planning, the vehicle route, 

which is the sequence of an agricultural vehicle following individual paths, can 

FIGURE 5.7  (See color insert.) Examples of an optimized 3D coverage path planning   

algorithm for a 3D terrain where terraces and valleys exist. (From Jin, J. and L. Tang. 2011. 

Journal of Field Robotics, 28:424–440. With permission.) 
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FIGURE 5.8  Difference between traditional and optimized routes of a mowing operation. 

(Adapted from Bochtis, D.D., S.G. Vougioukas, and H.W. Griepentrog. 2009. Transactions of  
the ASABE, 52:1429–1440.) 

be further optimized to minimize the distance traveled in headland turning and 

improve field efficiency when performing an agricultural operation. Bochtis et al. 

(2009) developed a mission planner based on an algorithmic approach where field 

coverage planning was transformed and formulated, as a vehicle routing problem 

(VRP), which was formulated as an integer programming problem. Through this 

approach, nonworking travel distance was reduced by up to 50% compared to the 

conventional nonoptimized method. They also incorporated different operational 

requirements and produced a different field pattern for each particular operation, 

which were optimal in nonworking travel distance (Figure 5.8). 

5.5.4 MACHINE COORDINATION 

Machine coordination is a reactive task behavior in which multiple machines work 

together to achieve a particular field operational goal, for example, on-the-go unload

ing of a combine harvester into a grain cart. When the grain tank of a harvester is 

full, the harvester operator will call the tractor driver to position the tractor with 

grain cart alongside the moving harvester to unload the grain. While unloading, the 

harvester operator will still need to perform other normal tasks such as steering, 

changing travel speed, and adjusting machine settings. An intelligent harvesting sys

tem will not only automate the tasks of each individual machine (e.g., auto-steering 

of the harvester and the tractor) but also coordinate the tasks between the machines 

(e.g., maintaining the same offset distance between the harvester and the tractor 

while unloading on-the-go). To reduce operator stress and errors, the coordinated 

operation of the harvester and tractor will also ensure proper positioning of the grain 

cart without reducing harvesting speed. 

In recent years, several equipment manufacturers have commercialized guidance 

systems that allow a tractor-and-grain-cart unit to be driven without operator input 
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FIGURE 5.9  John Deere’s Machine Sync that can synchronize the operation of com

bines and tractors with grain carts for “on-the-go” harvesting. (Photo courtesy of Deere & 

Company.) 

while unloading combines. One example is the Machine Sync product from John 

Deere (Figure 5.9; Deere, 2015). Machine Sync creates an in-field wireless network 

that can include 10 machines (combines and tractors with grain carts). When a com

bine’s grain tank is full, a “ready-to-unload” signal is sent to the network, and one of 

the tractors in the network will be driven to the location alongside the combine based 

on its proximity to the combine to minimize the wait-time. The combine operator 

then automatically controls the tractor’s speed and location while unloading. 

5.6 NAVIGATION AND MACHINE CONTROL TECHNOLOGIES 

An important layer of any intelligent agricultural machine is the control layer, which 

uses knowledge from the machine perception layer, and controls physical machine 

actuators and power systems to achieve the machine behaviors required to meet field 

operation goals. In many respects, agricultural machine control is the most devel

oped technology of all technology layers required for machine intelligence. Closed-

loop control systems have been a part of agricultural machines for many years, from 

sprayer rate controllers being introduced in the late 1970s, to automatic guidance 

being commercialized in the early 2000s. Recent years have seen an explosion of 

newly commercialized controller technology on agricultural machines. There is no 

reason to expect this trend to diminish in the near future. In this section, we will thus 

provide examples of control technology in agricultural machines. 

5.6.1 CONTROLS BACKGROUND 

Control systems automatically regulate machine output variables such as a motor 

shaft speed or actuator position in the presence of uncertainty and disturbances. 
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Control systems can be open-loop, which means with knowledge of the system being 

controlled, called the plant, a control signal to a plant input will result in desired 

plant output without measurement of the output. However, if the actual plant changes 

from how it is represented in the plant model, the output will deviate from the desired 

output value. In addition, the output will be sensitive to disturbances to the system. 

Deviation from the desired output is called controller error. 

Closed-loop control measures the plant output and compares it with the desired 

output. The difference between the two, the error signal, is then fed as input to the 

controller, which modifies and amplifies this input and provides a control input to 

the plant. The closed-loop technique overcomes plant model deficiencies and makes 

the overall system less sensitive to disturbances. Closed-loop control is necessary for 

most intelligent agricultural machine applications, because of limited fidelity in the 

plant models and because of the uncertain environment in which the system must 

operate with many disturbances. 

However, often for agricultural applications, the loop is closed at the point where 

the plant output can continually be measured with available sensing technology. 

The relationship between the measured value and the final output must be cali

brated and operated according to a calibration relationship. For example, droplet 

size controllers on sprayers measure nozzle pressure and provide a controller input 

to the system to affect the size of droplets. Nevertheless, droplet size is not mea

sured directly because of the high cost of droplet size measurement equipment. 

Similarly, the application rate of dry fertilizer is not measured directly. Rather the 

speed of the fertilizer metering system is measured, fed back to the controller, and 

compared with the desired speed. Based on the calibration curve relating the meter 

speed to the application rate, the meter speed is controlled to provide the desired 

application rate. So this system is closed loop to the meter speed, but the application 

rate is actually running open loop. 

There are many intelligent machine control examples in agriculture. van Straten 

and van Willigenburg (2006) provide an overview of control systems, including 

a classification of different control methods. The subsections below will provide 

examples as applied in the areas of vehicle navigation, boom section control, and 

implement control. 

5.6.2 NAVIGATION CONTROL 

The main goal of navigation controls is to automatically guide or steer a vehicle along 

a path and to minimize the error between the actual trajectory that the vehicle takes 

and the desired path. Automatic guidance of mobile agricultural field equipment 

improves the productivity of many field operations by improving field efficiency and 

reducing operator fatigue. The idea of automatically guiding vehicles is by no means 

new, and relevant literature can be found from several decades back (Grovum and 

Zoerb, 1970; Parish and Goering, 1970; Smith et al., 1985; Tillett, 1991; Stombaugh 

et al., 1999; Wilson, 2000; Hagras et al., 2002; Zhang and Qiu, 2004; Zhou et al., 

2008; Gomez-Gil et al., 2011; Tu, 2013). The advent of GPS in the early 1990s led 

to a flurry of research investigating the use of GPS as a positioning system for auto

matic guidance (Larsen et al., 1994; Elkaim et al., 1997; Griepentrog et al., 2006; 
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Burks et al., 2013). Commercialization of GPS-based automatic guidance occurred 

in the first decade of this century, and was adopted very quickly to become one of 

the most highly adopted PA automation technologies. 

A typical navigation controller design process involves modeling, simulation, 

implementation, and field test and tuning steps. Different navigation control algo

rithms have been developed based on different vehicle models. The selection of a 

proper kinematic or dynamic model is the necessary first step in controller design, 

as it will greatly influence the computation in system identification, the order and 

complexity of the system, and the dynamic and steady-state performance of the 

derived navigation controller. Kinematic model-based controllers are more suitable 

for lower-speed vehicles—for example, under 4.5 m/s—since they cannot represent 

dynamic effects such as side slip (Karkee and Steward, 2010). Since the majority 

of farm field tractors are front-wheel steered, bicycle models were typically used 

to develop various closed-loop feedback control laws, among which proportional, 

integral, and differential (PID) controllers are the most common. Zhang and Qiu 

(2004) developed a dynamic path search algorithm for tractor navigation based on 

a bicycle model (Figure 5.10). They achieved a lateral offset error of less than 0.1 m 

on straight paths, but experienced a noticeable degradation of tracking accuracy on 

curved paths. Other vehicle models have also been used in tractor controller develop

ment. Stombaugh et al. (1999) created a double-integrator transfer function to relate 

vehicle lateral deviation to steering angle. They developed a proportional controller 

to auto-steer a tractor at speeds up to 6.8 m/s with less than 16 cm of lateral path 
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FIGURE 5.10  Bicycle model of a tractor in field and tractor–body coordinates. (From 

Zhang, Q. and H. Qiu. 2004. Transactions of the ASAE, 47:639–646. With permission.) 
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tracking error. Other methods for designing navigation controller for agricultural 

vehicles include linearization followed by linear quadratic regulator (LQR) optimi

zation (O’Connor et al., 1996; Thuilot et al., 2002), fuzzy logic, and neural network-

based approaches (Cho and Ki, 1999; Hagras et al., 1999; Ashraf et al., 2003; Zhou 

et al., 2008). 

Like other nonholonomic nonlinear systems, agricultural robotic vehicles have 

system uncertainties and time-varying parameters, especially when working in off-

road environments. 

External factors such as soil conditions also affect vehicle dynamic character

istics. Both unpredictable internal perturbations and external disturbances create a 

great challenge. In their early work to develop a self-tuning navigation controller for 

farm tractors, Noh and Erbach (1993) used a variable forgetting factor in an adaptive 

steering controller based upon a minimum variance control strategy to cope with 

nonlinear time-varying dynamics. More recently, Gomez-Gil et al. (2011) developed 

two control laws: one for tracking straight lines and the other for tracking circular 

arcs. These control laws were shown to have global asymptotic stability with no 

singularity points. 

4WS and 4WD designs provide maneuverability and traction control advantages 

to a field robot. Tu (2013) reported on the development of a 4WD/4WS vehicle, 

AgRover, and developed a sliding mode control-based robust navigation controller. 

A backstepping method was used to decompose the complex nonlinear system to 

lower-dimension subsystems that were controlled through pseudocontrol variables. 

When compared with the feedback linearization method (Kim and Oh, 1999; Wang 

and Yang, 2005), backstepping does not require an accurate model. Sliding mode 

control has robustness to parameter perturbations and external disturbances (Cheng 

et al., 2007), making it suitable for off-road environments. In Tu’s work, errors of 

0.08 and 0.13 m were observed for straight-line and curved trajectory tracking, 

respectively, in field tests (Figure 5.11). 
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FIGURE 5.11  Robust navigation control of a small 4WD/4WS agricultural robotic vehicle.  

(a) AgRover; middle: coordinated four-wheel steering. (b) Tracking over a U-shaped path. 

(From Tu, X. 2013. Robust Navigation Control and Headland Turning Optimization of 
Agricultural Vehicles. Graduate thesis and dissertation. Iowa State University, Ames, Iowa, 

USA. With permission.) 
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5.6.3 SPRAYER BOOM SECTION CONTROL 

A widely adopted control system application in PA is automatic section control, 

which ranks second only to automatic guidance technology in terms of its com

mercial success. To implement section control, the width of a field sprayer boom 

is divided into multiple sections, with individual sections controlled in an on/off  

fashion. Currently, the smallest unit of section control is the individual nozzle, but 

in most cases, several adjacent nozzles will be grouped into the minimum controlled 

section resolution. Boom section control can enable more efficient spraying by reduc

ing pass-to-pass overlap as well as preventing application to off-target areas. Each 

section is controlled independently of the rest of the system based on the section’s 

location within the field or canopy. These systems rely on a task computer to control 

the desired state of each section based on the section’s location within the field, taken 

from accompanying sensors and/or on-board maps. 

Map-based boom section control systems are commonly used in row crops. GIS 

maps are the central components in this system, which contain no-spray zones 

determined by the operator prior to spraying, as well as a dynamically updated “as

applied” history where product has been applied to the field. The task computer uses 

vehicle location and orientation from a GPS receiver to determine the location of 

each of the boom’s sections and decides if each boom section should be on or off. If 

the area under the boom has not yet been sprayed and is an acceptable spray location 

(within the defined boundaries), the section is turned on. If the area has already been 

sprayed or is outside the field boundaries, the section is turned off. 

A main benefit of using the boom section control technology for a sprayer is the 

reduction in the chemical application overlap (Figure 5.12). As the sprayer enters the 

headland (Figure 5.12a), the sections (nozzles) are sequentially turned off from (a) to 

(b); when the sprayer exits the headland (Figure 5.12b), they are sequentially turned 

on from (a) to (b). The savings realized through the adoption of section control tech

nology is mainly based on the number of control sections and the field shape (Luck 

et al., 2011a,b). 

Luck et  al. (2010) found that automated section control of row crop spraying 

with a seven section resolution reduced overapplication from a 12.4% overlap with 

a manually controlled five section system to only 6.4%. Savings typically increase 

with increases in the number of control sections. The greatest potential occurs with 

irregularly shaped fields and with fields containing inclusions such as grassed water

ways. Average savings by using boom section control were estimated at 5% for a 

typical size machine and field shape. Section control can also be used for planters in 

a similar fashion. As the size of modern agricultural equipment increases, section 

control becomes a more important part of PA. 

Nevertheless, boom section control can lead to substantial dynamic variation 

in nozzle pressures and flow rates as sections are turned on and off. Sharda et al. 

(2010) showed over a 10% increase in nozzle flow rate during boom and nozzle sec

tion control without rate control compensation. The nozzle pressure variations also 

occurred when exiting and reentering point rows, leading to overapplication when 

exiting point rows and underapplication during reentry (Sharda et al., 2011). Even 

with the integration of rate control with section control, the variation in application 
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Boom sections 
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the sprayer
enters the 
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are automatically

actuated on as 
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FIGURE 5.12  Section control technology for a spray boom. (Courtesy of Luck, J.D.,  

T.S. Stombaugh, and S.A. Shearer. 2011a.  Basics of Automatic Section Control for Agri 
cultural Sprayers. Available at http://www2.ca.uky.edu/agc/pubs/aen/aen102/aen102.pdf.  

Accessed on January 31, 2015. With permission.) 

rate remains an issue due to the slower response of the rate control system (on the 

order of seconds) as compared to that of a section control system (on the order of mil

liseconds). New controller technologies, such as a feed-forward control system using 

boom pressure and flow-rate measurements, boom section states, and a boom model 

could reduce these application rate errors. 

5.6.4 IMPLEMENT CONTROL 

Implement control is also available so that the burden on the operator to control 

implement settings can be moved to automatic control. This reduces stress and 

fatigue on the operator and gives the operator freedom to take on more of a supervi

sory role of the overall machinery system. In addition, implement control often leads 

to the reduction of errors in the field operation such as turning on or off the seeding 

at the wrong location and overlap of adjacent swaths or skips in chemical application. 

There are many implement control examples for field crop machines. 

One good example is iTEC Pro, or intelligent Total Equipment Control, from John 

Deere (Figure 5.13). iTEC Pro is used for handsfree turns and implement control at 

headlands with a focus on optimizing implement field efficiency. The iTEC Pro inte

grates AutoTrac automatic steering and implement management systems (IMS) on 

http://www2.ca.uky.edu
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FIGURE 5.13  John Deere’s iTEC Pro for hands-free turns and implement control at head

lands. (Photo courtesy of Deere & Company.) 

certain tractors to control tractor speed, power-take-off (PTO) engagement, hydrau

lic valve position, front and rear mounted implement height, and differential lock 

engagement during headland turns. 

5.7 SYSTEM AND SOFTWARE ARCHITECTURE 

In intelligent systems engineering, an architecture is a means for managing complex

ity. Intelligent agricultural machines and field robots of necessity are complex sys

tems comprised of various components and subsystems; many of which are complex 

systems themselves. Since individual humans and teams are limited in their time and 

resources, as well as their ability to keep track of details, they need a way to man

age system complexity during development. The development of automatic guidance 

systems would be very slow, for example, if for each instance of development, the 

team would need to develop a new GPS receiver for that specific application. Rather, 

the complexity of a GPS receiver is physically encapsulated in the GPS package, the 

interface to the GPS is well defined through a common electrical connector, and the 

electrical signals conform to standardized communications protocols. The receiver 

accuracy can also be documented through measurements from standard test pro

cedures and well-defined performance metrics. This principle of abstracting com

plexity through encapsulation of components and clearly defined interfaces to the 

components is generally what is meant by the phrase “robotic system (or software) 

architecture.” 

Intelligent agricultural machines require, to varying degrees, architecture for  

both hardware and software. Just thinking about the components required for a par

ticular robotic application and how those components are connected to one another 

and are interacting with one another is an example of “architecture.” The potential 

is excellent for leveraging work across research teams through system architectures 
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that can be shared, standardized, and distributed so that different researchers can 

build on the efforts of others. These architectures can be proprietary so that develop

ment teams within a company can work together more effectively and can internally 

manage complexity. Architectures can also be open and public to facilitate more 

rapid development across development teams, as well as to facilitate the intercon

nectivity of components and subsystems available on the market. 

Many examples of robot system architectures exist. Kramer and Scheutz (2007) 

surveyed nine open-source robotic development environments, or system architec

tures, for mobile robots, and evaluated their usability and impact on robotics develop

ment. Jensen et al. (2014) surveyed available robotic system architectures, including 

CARMEN, CLARAty, Microsoft Robotics Developer Studio, Orca, Orocos, Player, 

and ROS. They also found examples of lesser-known architectures, which may be more 

relevant to agricultural robots, including Agriture, Agroamara, AMOR, Mobotware, 

SAFAR, and Stanley. Of these, four architectures, CARMEN, Agroamara, Mobotware, 

and SAFAR, had field trials for agricultural applications. However, open-source avail

ability was limited and only Mobotware had been recently updated. 

While different architectures may focus on different aspects of robotic systems, 

they tend to provide the means for (1) modularizing tasks for processes that are impor

tant to a functioning robot, (2) defining messaging systems and protocols for interpro

cess communication, and (3) defining operations that must occur across distributed 

processes. Several illustrative system architectures portray key features of architec

tural thinking that is needed for present and future intelligent agricultural machines. 

In early efforts to promote architectural thinking about agricultural robots, 

Blackmore et al. (2002) proposed a conceptual system architecture for autonomous 

tractors that consisted of a set of objects or agents that have well-defined narrow 

interfaces between them. The two types of agents are processes and databases. A pro

cess carries out tasks to achieve a goal. Nine processes were defined and described: 

Coordinator, Supervisor, Mode Changer, Route Plan Generator, Detailed Route 

Plan Generator, Multiple Object Tracking, Object Classifier, Self-Awareness, and 

Hardware Abstraction Layer (Figure 5.14). Three databases were defined (Tractor, 

Implement, and GIS) and are used to store and retrieve data about the machine and 

its operational context. 

Coordinator 
Fleet optimization 

Context assessment 
(message based) 

HAL 
Fault diagnosis 

DRPG 
Fault diagnosis

object avoidance 

RPG 
Fault diagnosis

route optimization 

Implement
Fault diagnosis

task 

Self awareness 
Fault diagnosis

self classification 

Object tracking
Fault diagnosis

object classification 

Fault diagnosis
(message based) 

Mode changer
Vehicle behavior 

FIGURE 5.14  A conceptual system architecture for an autonomous tractor, which consists  

of 10 encapsulated processes, databases, and interprocess messaging. (From Blackmore, B.S.,  

S. Fountas, and H. Have. 2002. Proposed system architecture to enable behavioral control of  

an autonomous tractor. In Zhang, Q. (ed.),  Automation Technology for Off-Road Equipment: 
Proceedings of the 2002 Conference, St. Joseph, MI, USA: ASAE. With permission.) 



 

 

 

 

 

 

 

 

163 Intelligent Agricultural Machinery and Field Robots 

Hierarchical relationships existed between the processes. The Coordinator pro

cess, for example, would reside on a computer in the farm office, and would facilitate 

the human farm manager to provide high-level operational directives to the robot 

(e.g., check nutrient status of corn in field 1 for 3 days) and provide robot status 

feedback to the farm manager. The Supervisor process would be hosted on the trac

tor, and would relay messages from the Coordinator to manage lower-level process. 

While there was no reported implementation in Blackmore et al. (2002), the thought 

behind the architecture specifically for a tractor was useful and similar structures are 

observed in later architectures for intelligent agricultural machines. 

Torrie et  al. (2002) described the Joint Architecture for Unmanned Ground 

Systems (JAUGS) Domain Model, which was in active development at that time, 

and highlighted some implementations of JAUGS in agriculture, including John 

Deere’s Autonomous Orchard Tractor and Autonomous Gator. Torrie et  al. stated 

that JAUGS was primarily a standard messaging architecture to enable components 

to communicate to one another in a standard manner. Thus, as long as different com

ponents (i.e., controllers, user interfaces, and sensors) comply with the standard, they 

are able to communicate without problems. 

Later, JAUGS was changed to JAUS to be more generally applied to all types 

of unmanned vehicles. In 2005, JAUS transitioned to be a Society of Automotive 

Engineers standard developed under its aerospace standards division. Rowe and 

Wagner (2008) provided a clear description of the JAUS standard. The standard 

has two parts, the domain model that describes the goals for JAUS and the refer

ence architecture that specifies an architecture framework, a message format, and a 

standard message set. They described how they used JAUS in an implementation that 

was their organization’s entry into the DARPA 2007 Urban Challenge. 

The Robotics Operating System (ROS; Open Source Robotics Foundation) is an 

open-source robotic operating system developed at the messaging layer to provide an 

interface for passing messages between processes running on different host comput

ing platforms that make up the computer hardware architecture of a robot. ROS also 

provides a broad set of libraries and tools useful for robotics development. These 

resources have grown out of the experience of the ROS community. Libraries include 

(1) standard robot message definitions, (2) the transform library for managing coor

dinate transform data, (3) a robot description language for describing and modeling 

a robot, (4) means for collecting diagnostics about the state of the robot, and (5) 

packages for common robotics problem such as pose estimation, localization, and 

mobile navigation. One tool is for 3D visualization of sensor data types and another 

for developing graphical interfaces for a robot. ROS also includes integration with 

other open-source projects, including the robot simulator, Gazebo, the well-known 

computer vision library, OpenCV, pointcloudlibrary—for processing 3D data and 

depth images, and the motion planning library, MoveIt! (Quigley et al., 2009; ROS. 

org, 2015). While ROS is general and not specifically tailored to any specific applica

tion, it does have applicability to intelligent agricultural machines and can be used as 

a part of larger system architectures for agricultural machines. 

Jensen et  al. (2014) describe the development of a robotic software systems 

architecture called FroboMind intended to assist in the development of field 

robots for PA tasks (Figure 5.15). The authors make a case that, although there are 
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FIGURE 5.15  The FroboMind architecture layer consists of perception, decision making, 

and action layers along with a separate safety module. (From Jensen, K. et al., 2014. Robotics, 

3:207–234. With permission.) 

several examples of agricultural robots in the literature, the complexity of soft

ware required for autonomous systems in agriculture makes it progressively dif

ficult for individual research groups to make progress, and greater collaboration is 

needed. They propose that a software architecture designed for field robots doing 

PA tasks will enable field experiments and more efficient reuse of existing work 

across projects. 

FroboMind has a four-part structure, which from lowest to highest level include 

operating system, middleware, architecture, and components. The Linux operating 

system Ubuntu was chosen because of its large distribution and long-term support. 

ROS was used for the middleware, the software that connects software components 

or mediates between software applications, to define the internal communication 

structure between processes. 

The FroboMind architecture level consists of four modules, which are perception 

(consisting of sensing and processing submodules), decision making (consisting of 

mission planning and behavior), action (consisting of executing and controlling), and 

safety modules, all of which are encompassing the layered framework introduced 

at the beginning of this chapter. At the component level, the software components, 

written in C++ or Python, are implemented as ROS packages. FroboMind is open 

source and has been used in the development of several agricultural robots. It is not 

a hard real-time system, but its “soft” real-time performance appears to be sufficient 

for agricultural robotics applications. Jensen et al. (2014) observed relatively rapid 
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development of a new application using FroboMind in an experiment. A high level of 

software reuse was observed across several robotic implementations. 

Robotics software system architectures provide services that are needed for 

future intelligent agricultural machine behavior. For small field robots, a common 

limitation is the low work rate associated with them. To overcome this limitation, 

multiple robots will need to operate collaboratively to meet agricultural timeliness 

requirements. Such an application requiring multiple vehicle coordination will thus 

need a distributed software architecture such as that provided by ROS. ROS enables 

the development of systems consisting of a number of processes running on different 

hosts, and potentially on different robots. These processes communicate on a peer

to-peer network and via wireless links such as IEEE 802.11. 

With a multiple vehicle team focusing on completion of a field operation, vehicle 

coordination will be required. Thus, system architectures are needed to provide the 

middleware required for vehicle coordination. In this scheme, it is important that 

each robot can flexibly assume different roles. For example, one robot might need 

to become a follower of another robot, or next become a leader of all local follow

ers, or be a follower of one robot and the leader of another. For this flexibility, the 

system architecture will need to provide the means for a role manager in each robot 

to assemble the correct processes and messages needed to act out the current role 

of that vehicle. To facilitate these interactions, publish–subscribe middleware can 

be used. This middleware enables processes to publish messages into the commu

nication channel without directly sending them to specific receivers. Subscribers, 

or the receivers of messages, can filter the messages they need and ignore the rest 

(Matteucci, 2003). This capability, along with peer-to-peer networking, provides a 

kind of flexible network structure in which any robot can be a leader or follower 

and robots can come in and out of system, with an ongoing scheme for discovering 

which robots are available to complete the field operation and real-time knowledge 

of each robot’s progress. While there may be a process providing overall coordina

tion of the completion of the field operation, work by individual robots can be carried 

out in a flexible manner. Additionally, remote procedure calls, as enabled in ROS, 

for example, enable one process to call a function in another process, which also is 

a powerful tool in distributed systems like those associated with mobile field robots. 

In summary, robotic software system architectures provide the means for han

dling complexity through well-defined processes and messaging, as well as higher-

level features, such as those described above. These architectures also promote 

reusability, which enables research and development teams to build on one another’s 

work and move toward more intelligence embedded into agricultural machines. 

5.8 AUTONOMOUS VEHICLES AND FIELD ROBOTS 

5.8.1 SMALL FIELD ROBOTS  IN RESEARCH 

Several examples of small field robots are covered in the literature. By studying the 

designs of these robots, insight can be gained into what machine forms might emerge 

as future field robots. Earlier agricultural field robots were typically designed for a 

specific purpose such as automated weeding or field data collection. More recently, 
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field robots have been designed for more general field operations. The following are 

some examples of field robots. 

Blasco et al. (2002) describe the development in Spain of a robot for weed control 

with a high-voltage electrode that eliminated weeds through electrical discharges. 

The electrode end-effector was positioned to the location of the weed plant by the use 

of a HEXA parallel linkage structure. Most of the work focused on machine vision 

perception for locating plants in images. In similar work, Astrand and Baerveldt 

(2002) reported on a robot developed in Sweden for the purpose of mechanical 

weeding in sugar beet. The robot had the capability to navigate along crop rows with 

a machine vision sensor and to distinguish between crop plants and weeds. 

Bak and Jakobsen (2004) described the development of a 4WS/4WD robot 

designed to sense and map weed populations in row crops. The robot was guided 

along crop rows with a machine vision perception system. The robot’s line tracking 

performance was reported. Bakker et al. (2010a,b) also reported on a small robot 

developed at Wageningen University in the Netherlands. A well-documented design 

process resulted in a 4WS/4WD robot powered by a 31.3-kW diesel engine and 

propelled by hydraulic transmission (Figure 5.16). The robot was designed to be a 

research platform for intrarow mechanical weeding for sugar beet. Development of 

a navigation controller for the robot was reported, but no work about weed detection 

and mechanical weeder control could be found. 

The BoniRob is a field robot developed jointly by Hochscule Osnabrück, Germany 

and Amazone and Robert Bosch companies (Bangert et al., 2014; Figure 5.17). The 

BoniRob was developed for plant phenotyping, but is also a reusable platform for dif

ferent application modules such as mechanical weed control and precision spraying. 

FIGURE 5.16  A weeding robot developed at Wageningen University. (From Bakker, T., 

J. Bontsema, and J. Müller. 2010a.  Journal of Terramechanics, 47:63–73. With permission.) 
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FIGURE 5.17  BoniRob autonomous field robot with a soil penetrometer application mod

ule. (From University of Applied Sciences Osnabrück, Germany. With permission.) 

The modules are mechanically attached to a frame in the center of the robot, which 

also has a plug for electrical power and ethernet connection to the robot platform. 

The application module concept was inspired by the conventional tractor and imple

ment paradigm. Langsenkamp (2014) reported on the BoniRob mechanical weed 

control actuator that presses individual weed plants into the ground. 

The majority of the above robots had a similar machine form consisting of a rela

tively high clearance platform enabling movement over tall crop plants, as well as 

4WS/4WD. This machine form is also found in other robots, including the Iowa State 

AgRover and the Embrapa Brazil Agribot (Godoy, 2012; Diaz, 2013). This platform 

design enables flexibility in the type of tools that can be used with the platform, 

application over a wide range of crop growth stages, and high maneuverability. 

5.8.2 OTHER ROBOT MACHINE FORM APPROACHES 

More recent field robots have tended to take other approaches to machine form.  

One machine form is a low-clearance track vehicle with skid-steering. Field robots 

of this type emerged with the Armadillo robot designed and built as an electrically 

powered general-purpose tool carrier (Jensen et al., 2012). In the next generation, the 

Armadillo Scout was designed with main features of redesigned track modules and 

new battery technology (Nielsen et  al., 2012; Griepentrog, 2012). Emerging from 

these efforts is the Grassbots project (Sørensen, 2014; Anon., 2014), which uses a 

similar machine form with a low-clearance chassis and tracks—thereby providing a 

low-weight platform for lowland grass harvesting. The project involves multiple uni

versity partners and enterprises who will lead commercialization efforts. The com

mercial Robotti field robot has a similar machine form, is electrically powered, and 

has been demonstrated as a tool carrier for the cultivation of row crops (Kongskilde, 

2013; Grimstad, 2014). 
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Another approach has been to use commercially available machines into which 

machine intelligence is integrated to enable machine autonomy. This approach, 

building on proven machinery technology, has promise in the commercialization of 

intelligent agricultural machines. Noguchi (2013) presented several robotic vehicles 

that were built on small, conventional machinery platforms, including a wheeled 

tractor, a crawler tractor, a rice transplanter, and a small combine harvester. This 

approach used small, conventional agricultural machines typically found in Japan. 

Each machine was able to autonomously perform field operations for which it was 

designed. The wheeled tractor, for example, was able to carry out tillage, seeding, 

spraying, and harvesting autonomously when provided with a map. Similarly, the 

ASuBot was built on a Massey Ferguson 38-15 garden tractor (Jørgensen, 2011; 

Nielsen et  al., 2011; Jensen et  al., 2012). The Autonomous Mechanisation System 

(AMS; Blackmore et al., 2007a,b; Griepentrog, 2010; Jaeger-Hansen, 2013) was built 

on a 20-kW tractor (model Hakotrac 3000, Hako, Bad Oldesloe, Germany). These 

examples are similar to the early Demeter system built on a conventional windrower 

(model 2550 Speedrower, New Holland, Pennsylvania) using GPS and machine 

vision for localization. The system autonomously harvested over 40 ha each year in 

two cropping seasons (Pilarski et al., 2002). 

5.8.3 COMMERCIAL AUTONOMOUS MACHINES 

Commercial introductions of machine autonomy have generally been leader–follower 

pairs of machines (Hest, 2012; Posselius and Foster, 2012). Several of these examples 

are for on-the-go unloading of combine harvesters into a grain cart pulled by a trac

tor. For example, John Deere Machine Sync, described above, enables the combine 

to lead the tractor–grain cart follower (ASABE, 2013). The Case IH V2V system 

operates in a similar fashion (Case IH, 2011). The Kinze Manufacturing Autonomy 

project has demonstrated a fully autonomous tractor–grain cart product. With this 

system, combine operators call the autonomous tractor to follow the combine until 

the time of unloading when the tractor synchronizes with the combine. After unload

ing, the grain cart is driven to the side of the field to await further instructions. This 

system is currently in a multiple year test program (Kinze, 2014). 

Fendt’s entry into machine autonomy is a product called GuideConnect, which is 

a leader–follower system for two tractors performing field operations (Fendt, 2012). 

The leader tractor has an operator, and the following tractor is driverless. The fol

lower tractor follows the course of the leader tractor at an operator-specified follow

ing distance and a lateral distance from the path of the leader tractor. At the end 

of the field, the follower tractor pauses while the leader tractor turns, and then the 

follower takes the same turning pattern. 

These commercial introductions demonstrate that for specific situations, semiau

tonomous operations show potential to add value to farmers. Note that in each case, 

human operators are exercising supervision and are doing the high-level control and 

mission planning. That is, much of the high-level intelligence still resides in the 

human, and it can be amplified with machine intelligence to achieve higher produc

tivity or efficiency goals. 



 

 

 

 

 

 

Intelligent Agricultural Machinery and Field Robots 169 

5.9 SUMMARY AND FUTURE DIRECTIONS 

The growing worldwide population requires increased food production from agricul

ture. However, the available land, water, and other production inputs are all limited. 

As such, about 70% of the additional food needs must come from efficiency-improv

ing technologies (Simmons, 2011). PA is one of those technologies; machine automa

tion is a key component in PA. Automation cannot only improve productivity, but 

also solve problems related to limited labor availability and high labor costs due to 

the aging farm population. Significant progress has been made since the early 2000s 

in automated guidance, variable-rate application, section control, machine coordina

tion, and logistics support. The rapid adoption and impact of automation technology 

in agriculture cannot be understated. However, there is still a long way to go toward 

robotic farming. Many technologies, as required for developing intelligent agricul

tural machinery and discussed in the previous sections, are still in early develop

ment stages. Among those, the most challenging technologies are machine health 

awareness and safeguarding, mission planning, and implement monitoring. System 

architectures that will enable research teams to build upon one another’s work are 

also critically needed. 

Future intelligent machinery for production agriculture may take the form of mul

tiple small robots. There are many advantages in using small autonomous robots in 

PA. With a small machine form, the soil compaction problem caused by large and 

heavy agricultural machines traveling over fields can be minimized. Research also 

indicated that utilizing small machines have the potential to reduce energy require

ments for field operations (Toledo et al., 2014). In addition, vehicle safeguarding for 

a small machine can be implemented more easily than for a large machine, which 

makes the small-sized robot a more desired machine form for robotic farming. 

However, small autonomous robots have a competitive disadvantage over conven

tional machines because of their slow work rate. 

Additionally, the right level of automation still needs to be sorted out in the mar

ket. Although fully automated machines are desired, some argue that such machines 

may not be commercialized in the foreseeable future due to safety concerns. Future 

intelligent machinery may still need human operators for some supervisory control, 

reacting to unexpected situations that could arise in fields, although the majority of 

machine functions will be automated. The leader–follower configuration for the com

bine harvester and tractor–grain cart combination for on-the-go grain tank unloading 

is an example. Development of this type of highly automated machine or semiautono

mous machine will continue to be the focus of the agricultural equipment industry. 

There are very few examples of successful commercialization of agricultural 

robots. The reasons for slow commercialization are mainly technical and economic. 

Technically, removing human operators from a machine performing a field operation 

means that the burden of the supervisory control of the machine must be placed on 

machine intelligence systems. To date, it has been difficult to achieve this level of 

intelligence. Economically, the high cost to equip the machine with the necessary 

intelligence is not feasible right now. Nevertheless, technology innovations in sens

ing and controls, precision guidance, machine communications, information man

agement, and power electronics may eventually make robotic farming a reality. 
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CONTENTS 

6.1  INTRODUCTION AND CURRENT STATUS 

Research activities in precision agriculture started with the development of yield 

monitors, grid soil sampling, soil sensors, positioning systems, and variable-rate 
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technology (VRT) at universities and research institutes in the United States and 

Europe in the late 1980s. By the early 1990s, grain yield monitors and variable-rate 

controllers became commercially available. With advances in global positioning sys

tems (GPS), geographic information systems (GIS), remote sensing, and sensor tech

nology, the agricultural community has experienced and witnessed the development 

and application of various precision agriculture technologies since the mid-1990s. 

The central concept of precision agriculture is to identify within-field variability 

and to manage that variability. More specifically, precision agriculture uses a suite of 

electronic sensors and spatial information technologies (i.e., GPS, GIS, and remote 

sensing) to map within-field soil and crop growth variability and to optimize farm

ing inputs (e.g., fertilizers, pesticides, seeds, and water) to the specific conditions 

for each area of a field with the aim to improve farm input efficiency, increase farm 

profits, and reduce environmental impacts. To automatically implement the concept 

of precision agriculture, the following four main steps are generally involved: (1) 

measuring spatial variability; (2) analyzing data and making site-specific recom

mendations; (3) implementing the variable-rate application (VRA) of farm inputs; 

and (4) evaluating the economic and environmental benefits. 

A broader view of precision agriculture would include more than VRA. It is 

more about helping farmers better manage their operations and correct inadver

tent errors using sensing and control to automate and more precisely carry out field 

operations. For example, automatic guidance, boom section control, and planter 

monitoring are all examples of precision agriculture technology, but really have 

nothing to do with VRA. 

Precision agriculture has the potential to improve the use efficiency of farm inputs, 

increase farm profits, reduce adverse environmental impacts, and improve sustain-

ability. These benefits are important for both producers and the general public and 

will affect the pace of adoption of precision agriculture. For a new farming practice 

to be widely adopted in production agriculture, the practice must yield an economic 

profit except for regulatory requirements. Precision agriculture requires additional 

costs associated with new equipment and data collection and analysis. If the initial 

investment for equipment is high, actual economic returns of VRA will be low or 

even negative for the first few years. Some costs associated with data collection for 

a field can be accurately determined, while other costs for new equipment and data 

analysis are difficult to estimate for each field. Nevertheless, it is certain that these 

costs will go down if the same equipment and data analysis software or services are 

used for multiple fields over multiple years. 

Despite technological advances and potential benefits, the adoption of preci

sion agriculture technologies has been slower than envisioned in the United States 

as well as in other parts of the world. Using the U.S. Department of Agriculture’s 

Agricultural Resource Management Survey (ARMS) data collected between 1996 

and 2009, Schimmelpfennig and Ebel (2011) examined trends in the adoption of 

four key information technologies, including yield monitors, VRA technologies, 

guidance systems, and GPS-based soil maps, in the production of major field crops. 

While yield monitoring was used on over 40% of U.S. grain crop acres, the adoption 

rates for VRT were only 12% for corn, 8% for soybeans, and 14% for winter wheat. 

The use of GPS-based soil maps declined to about 15%, while guidance systems 
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were adopted on 15%–35% of nationally planted acres for corn, soybeans, and win

ter wheat. Some of the factors that could contribute to the low and mixed adoption 

rates include the lack of farm operator education, technical sophistication, and farm 

management acumen. 

Using the 2010 ARMS data of corn producers, Ebel and Schimmelpfennig (2012) 

attempted to understand the lower VRT adoption rates and to see if the adoption is 

sequential. Based on 1445 observations from the survey, the adoption rates were 39% 

for yield monitors and 17% for VRT for corn in 2010. Only 45% of the yield monitor 

users actually created yield maps. About 40% of those who used yield monitors and 

created yield maps also made use of VRT. In comparison, only 10% of those who 

used yield monitors, but did not create yield maps, performed variable-rate fertilizer 

application. 

In 2013, CropLife magazine and the Center for Food and Agricultural Business 

at Purdue University conducted the 16th survey of crop input dealers and their use 

of precision technology (Holland et al., 2013). About 51% of the respondents offered 

controller application of single-nutrient fertilizer, while 47% offered a multinutrient 

fertilizer option. Variable-rate pesticide application decreased from 22% in 2011 to 

16% in 2013, while variable-rate lime application made a minor gain from 45% in 

2011 to 47% in 2013. Variable-rate seeding increased to 32% in 2013 from 24% in 

2011. Precision agronomic services, such as soil sampling with GPS and GIS field 

mapping, were offered by 66% of the respondents, an increase from 59% in the 

2011 survey. GPS guidance systems with manual (light bar) and automatic (auto-

steer) control were offered by 65% and 61%, respectively, of responding dealerships. 

GPS-enabled sprayer boom sections (53%), satellite/aerial imagery (39%), field map

ping with GIS for billing purposes (32%), and GPS for logistics (21%) all made gains 

from the 2011 survey. The use of telemetry for field-to-home office communica

tions jumped from 7% in 2011 to 15% in 2013. Chlorophyll/greenness sensors also 

increased to 7% from 4% previously. Soil electrical conductivity mapping (12%) and 

other vehicle-mounted soil sensors for mapping (3%) were similar to the 2011 results. 

When asked about their propensity to invest in precision technology in the future 

in the 2013 survey, the responding dealerships indicated that investment would con

tinue to grow. About 81% of the respondents said they plan to allocate funds to 

precision technology, a slight increase from the 80% of the respondents investing in 

precision technology in 2011. Although most crop input dealers currently offer one 

or more precision agriculture technologies to their customers, the adoption rates of 

these technologies by farmers are still relatively low as shown by the ARMS data 

(Schimmelpfennig and Ebel, 2011). The adoption pattern has also been uneven geo

graphically. The survey results show that precision technologies are clearly more 

popular in the Midwest than in other parts in the United States. 

Many studies in the United States have shown that VRAs of farm inputs are 

superior to uniform rate application in terms of efficient input use, but evidence of 

profitability has been mixed (Swinton and Lowenberg-DeBoer, 1998; Bullock and 

Lowenberg-DeBoer, 2007). A principal cause of the nonprofitability of VRT has 

been that farmers have had insufficient information about crop yield response to 

managed inputs, field characteristics, and weather (Bullock et al., 2009). Review arti

cles and book chapters on the adoption and profitability of VRT and other precision 
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agriculture technologies around the world can be found in the literature (Griffin 

and Lowenberg-DeBoer, 2005; Srinivasan, 2006; Bramley, 2009; Oerke et al., 2010; 

Robertson et al., 2011; Zhang and Pierce, 2013). 

This chapter will discuss and illustrate with examples how precision agriculture 

technologies have been used for precision fertilizer application, water management, 

crop pest management, and specialty crop production in large-scale mechanized 

farming in the United States. Some of the challenges and research needs will also 

be discussed. 

6.2  PRECISION FERTILIZER APPLICATION 

Fertilizer application is an essential and critical practice in agricultural production 

systems. Fertilization is one of the greatest cost inputs in crop production. Taking 

fertilizer nitrogen (N) as an example, it has been the largest increase in the use of 

agricultural inputs during the past few decades (Johnston, 2000). In conventional 

fertilization management systems, fertilizer N is uniformly applied across a field. 

Uniform N fertilizer rate across entire fields can result in over- and underapplications 

of N because crop responses to N fertilization are often variable within individual 

fields (Vetch et al., 1995) and plants in some parts of the field may need more N while 

plants in other parts may require less. Therefore, on some parts of the field, more N 

should be applied or much less to none on other parts of the field (Raun and Johnson, 

1999). Either underuse or overuse of N fertilizer can create negative effect on desired 

growth pattern of plants and cause decrease of yield and quality (Fernandez et al., 

1996; Gerik et al., 1998). Additionally, overfertilization with N will increase produc

tion costs while increasing the potential for negative environmental impact (Bakhsh 

et al., 2002; USEPA, 2003). Owing to substantially increased environmental con

cerns and rising N prices, there is an urgent need of innovative technologies and 

systems that can apply the fertilizer more precisely so as to increase fertilizer use 

efficiency, maximize farm profit, and minimize environmental impacts. 

VRA technologies can be divided into two main categories: map-based and sen

sor-based. Map-based VRA uses predetermined prescription maps in VRA opera

tion while sensor-based VRA uses real-time information from various sensors to 

perform VRA “on-the-go.” No GPS receiver might be needed for the sensor-based 

VRA. 

6.2.1  EQUIPMENT  FOR FERTILIZER VRA 

The practice of map-based variable-rate fertilizer application requires hardware and 

software, including a prescription map, a fertilizer applicator equipped with a VRA 

controller and relevant software, and a GPS receiver (Figure 6.1). In field operations, 

as the applicator travels, the GPS receiver determines the location of the applicator in 

the field. Based on the spatial information from the GPS receiver and the data from 

the prescription map, the VRA controller generates an electrical signal to control a 

mechanical actuator to apply fertilizer at a desired rate to that specific location in the 

field. Although most of the equipment for variable-rate fertilization was map-based, 

sensor-based fertilizer VRA systems have been developed in recent years. Instead of 
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FIGURE 6.1  A m ap-based variable-rate liquid fertilizer applicator. Prescription maps can 

be uploaded and displayed in the controller installed inside the cab. 

using the application rates given in the prescription map in the map-based system, 

the sensor-based VRA applicator uses multiple sensors and data acquisition and pro

cessing systems to collect and interpret real-time information of plant health condi

tions, determine the application rate using predetermined algorithm, and control the 

actuator to apply the desired amount of fertilizer as the applicator travels across the 

field (Figure 6.2). 

Fertilizers can be applied as solids and liquid. Both solid and liquid fertilizer 

applicators with VRA capability are commercially available for agricultural produc

tion. Most VRA liquid fertilizer applicators use servo valves, flow meters, and speed 

sensors to directly control the flow of the liquid fertilizer to achieve a desired appli

cation rate. As the applicator moves across the field, the VRA controller is constantly 

updated with the applicator location information provided by the GPS receiver and 

desired application rate at the location, and then adjusts the flow rate of the liquid 

Actuator 

Controls 

Sensors 

FIGURE 6.2  Illustration of a sensor-based variable-rate application system including sen

sors, controls, and the actuator. 
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fertilizer to match the desired rate by controlling the servo valve opening based on 

the inputs from the speed sensor and flow meter and the swath width of the applica

tor (Yang, 2000; Grisso et al., 2011). Some other control methods such as chemical 

injection control and pulse width modulation (PWM) flow control are also available 

for VRA fertilization, especially for the top-dressing (Sui and Thomasson, 2006; 

Taylor and Fulton, 2010; Bora et al., 2011). 

6.2.2  PRESCRIPTION MAP 

Map-based variable-rate fertilization requires prescription maps. A prescription map 

provides the information to the VRA controller of the applicator to apply how much 

fertilizer at each specific location within the field. The prescription map for variable-

rate fertilizer should include spatial coordinates of each location and the fertilizer 

application rate associated with each location within the field. Normally, a prescrip

tion map can be created using GIS or other software. One or multiple inputs, includ

ing soil properties, crop yield, plant health conditions, and field topography, are often 

used to establish the management zone and calculate nutrient application rate. This 

input information can be obtained through various means, including soil sampling, 

soil survey maps, soil electric conductivity mapping, yield monitors, remote sensing 

imagery, and ground-based plant health sensing (Sui and Thomasson, 2006). No 

prescription map is needed for sensor-based variable-rate fertilization. Sensor-based 

applicators use sensors to collect the information for determining the nutrient appli

cation rate in real time in situ. The information from the sensors such as soil proper

ties and plant characteristics is processed for the rate control on-the-go. Though it 

does not involve a prescription map, a sensor-based system must have an algorithm 

programmed into the controller so that the controller can calculate the application 

rate using various sensor measurements as the applicator moves through the field. 

So far, the majority of variable-rate fertilizer applicators utilize prescription maps. 

A few sensor-based VRA systems are commercially available for fertilization appli

cation. Optical sensors for plant canopy reflectance measurement and electrical or 

electromagnetic sensors for soil electrical conductivity measurement are the most 

popular sensing devices used for sensor-based VRA. 

6.2.3  VARIABLE-RATE FERTILIZATION PRACTICE 

Variable-rate fertilization has become a common practice in crop production for 

many producers in the United States and Europe. This technology applies plant 

nutrients based on plant needs in each location within a field rather than the aver

age of the field. Adoption of this technology would increase fertilizer use efficiency 

resulting in improvement of crop yield and farming profitability and reduction of 

environment impacts. On-farm studies have been conducted to evaluate variable-

rate fertilization technologies and economic feasibility in field operation (Carr et al., 

1991; Mulla et al., 1992; Wibawa et al., 1993). The following are a few examples. 

Yang et  al. (2000) investigated the differences in yield and economic return 

between uniform and variable-rate N and phosphorus (P) fertilizer applications 

for grain sorghum for 2 years in Texas, USA. Three 14-ha fields were used with 
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three fertilizer application strategies (uniform rate N, uniform rate N and P, and 

variable-rate N and P) in the study. Soil samples were collected from the fields and 

analyzed for soil properties, including soil texture, organic matter, electrical conduc

tivity (EC), and nutrient contents. N and P application rates were calculated based 

on the yield goal and soil properties. Prescription maps for N and P application were 

created and the fertilizers were applied accordingly using a variable-rate fertilizer 

applicator. The sorghum was harvested with a yield monitor. Yield data analysis 

indicated that the variable-rate treatment resulted in significantly higher yields than 

the uniform N and P treatment for both years. Yield data also showed that yield in the 

area with variable-rate treatment was distributed more evenly than that with the two 

uniform rate treatments. The variable-rate treatment had positive relative economic 

returns of $27/ha in the first year and $23/ha in the second year over the uniform N 

and P treatment. However, if the costs for use of the VRA technology were consid

ered, these returns would be lower. 

Koch et  al. (2004) evaluated the economic feasibility of variable-rate N appli

cation in two continuous corn cropping system fields in Colorado for two grow

ing seasons. One field was 18.5 ha under furrow irrigation, and the other was 58 ha 

under center pivot irrigation. Commercial software was used to generate site-specific 

management zones (SSMZ) on the fields with GIS data layers, including bare soil 

aerial imagery, field topography, and the farmer’s past crop and soil management 

experience. Four N management strategies were compared, which were uniform N 

application with a constant yield goal, variable-rate N application based on grid soil 

sampling with a constant yield goal, variable-rate N application based on SSMZ 

using a constant yield goal (SSMZ-CYG), and variable-rate N application based on 

SSMZ using variable yield goal (SSMZ-VYG). Nitrogen application rate for each 

strategy was determined using an algorithm, which included yield goal, soil nitrate 

residual, and soil organic content as components in the calculating formula. After anal

ysis of the yields, costs, and net returns, they found that the SSMZ-VYG N manage

ment strategy used 6%–46% less total N fertilizer and produced $18.21 to $29.57/ha 

more net return when compared with the uniform N management. They also pointed 

out that it would be a more profitable way for producers to add VRA systems onto 

existing uniform N fertilizer applicators for variable-rate N fertilization. 

The impact of variable-rate fertilization on surface and underground water qual

ity was evaluated in wild blueberry fields in central Nova Scotia, Canada (Saleem 

et al., 2013a,b). Uniform and variable-rate fertilizer application treatments were used 

in these studies. The fertilizer was applied in the fields according to the experimental 

design. Surface runoff and subsurface water samples associated with different treat

ments were collected from different zones. The runoff water samples were analyzed 

for water quality, including total phosphorus (TP), dissolved reactive phosphorus 

(DRP), particular phosphorus (PP), and inorganic N concentrations. After every 

heavy rainfall, the subsurface water samples were collected and analyzed for nitrate 

N and ammonium N. Compared to the uniform fertilizer application treatment, the 

variable-rate treatment significantly reduced the TP, DRP, PP, and inorganic N losses 

in the runoff, but did not affect the yield with 40% less fertilizer applied. The vari

able-rate treatment significantly decreased nitrate and ammonium loading in subsur

face water as compared with the uniform treatment. 
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To make sensor-based fertilization, a real-time sensing and control system is 

required to determine the fertilizer needs and apply the desired rate at each specific 

location across the field. Sensors are the key components in the sensor-based fertil

izer application system. Several sensors are commercially available for VRA use. 

Crop Circle and GreenSeeker crop sensors are commonly used for plant canopy 

reflectance measurement. The Crop Circle sensor is made by Holland Scientific Inc. 

(Lincoln, NE). It uses modulated LEDs as a light source and is able to measure 

the reflectance in three bands. The GreenSeeker sensor, manufactured by NTech 

Industries (Ukiah, CA), also uses modulated LEDs as light sources and measures the 

light reflected from the plant canopy in two bands. Plant canopy reflectance in dif

ferent bands measured by these sensors has often been used to calculate vegetation 

indices, which indicate plant characteristics. The most commonly used index is nor

malized difference vegetation index (NDVI). NDVI is calculated by dividing the dif

ference between the reflectances at near-infrared (NIR) and red bands by the sum of 

the reflectances at the two bands; that is, NDVI = (NIR – Red)/(NIR + Red). Other 

vegetation indices, including reflectance band ratios and individual band reflectance, 

have also been employed for crop management. 

Sui et al. (1989, 2005) and Sui and Thomasson (2006) reported the development 

of a ground-based sensing system for determining N status in cotton plants in real 

time in situ. The system includes an active optical sensor, an ultrasonic sensor, and 

a data acquisition unit (DAQ). The optical sensor was able to measure crop canopy 

reflectance in four wavebands, including a blue band (400–500 nm), green band 

(520–570 nm), red band (610–710 nm), and NIR band (750–1100 nm). The ultrasonic 

sensor determined plant height. The DAQ was an intelligent device, which simulta

neously collected and processed data from the optical sensor, ultrasonic sensor, and 

spatial information from a GPS receiver on-the-go. Spectral reflectance and plant 

height data were compared to laboratory measurements of cotton plant leaf N con

tent and used to train an artificial neural network (ANN) for predicting N status in 

cotton plants. The trained ANN was able to predict N status of the cotton plants at 

90% accuracy when N status was divided into two categories, deficient and nonde

ficient. The results suggested that this real-time crop sensing system had promising 

potential for sensor-based fertilizer application. 

For successful use of a sensor-based variable-rate fertilization system, an 

understanding of how the sensor works and what it actually measures is required. 

The knowledge of relationships between sensor measurements and plant needs is 

also necessary. Taking crop canopy sensor and soil EC sensor as examples, the  

crop canopy sensor is positioned above the crop canopy and measures crop canopy 

reflectance in specific spectral bands, and the soil EC sensor measures soil electri

cal conductivity in different depths of the soil. The reflectance data and soil EC 

data can be processed and used for various applications based on the relationship 

between these data and other variables of interest. For example, Khalilian et al. 

(2008, 2011) used NDVI and soil EC data to develop an algorithm for N applica

tion in cotton. The results indicated the potential for using midseason specific 

plant NDVI data for VRA of N for cotton. Similar studies and results in cotton 

have been reported by Taylor et al. (2007), Scharf et al. (2008), and Sharma et al. 

(2008). 
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Scharf et  al. (2011) conducted an on-farm study on sensor-based variable-rate 

N applications in corn. In their research, multiple crop reflectance sensors were 

installed on the N application equipment to measure plant canopy reflectance to 

control side-dress N rate. Using the sensor’s outputs in the visible and NIR channels, 

a parameter referred to as relative visible/NIR was calculated by dividing the ratio 

of the reflectance at the visible band to the reflectance at the NIR band in the target 

area by the ratio of the reflectance at the visible band to the reflectance at the NIR 

band in the high-N area. The N application rate was determined using this relative 

visible/NIR parameter with an algorithm for N use in corn. According to the rate, 

N was applied site-specifically using the sensor-based variable-rate fertilizer appli

cator. Fifty-five on-farm demonstrations were made in 5 years. The results showed 

that the sensor-based N application increased partial profit by $42/ha and yield by 

110 kg/ha while reducing N use by 16 kg/ha as compared to the producer’s N rate. 

It was obvious that the sensor-based variable-rate N application for corn produced 

economic and environmental benefits. 

Raun et al. (2001) found that grain yield potential of winter wheat could be pre

dicted using canopy spectral reflectance characteristics. In their work, canopy spec

tral reflectances at the red and NIR bands were measured by utilizing an optical 

instrument. NDVI was calculated from the reflectance measurements. Yield poten

tial was estimated using NDVI measurements and cumulative growing degree-days. 

Raun et al. (2002) reported that when compared with uniform rate N application, the 

variable-rate N fertilization in wheat could increase N use efficiency by more than 

15% using the N fertilization optimization algorithm, which was developed with 

the canopy optical reflectance measurements. Biermacher et  al. (2009) conducted 

on-farm evaluation of the profitability of a sensor-based variable-rate N applica

tion system in comparison with the conventional uniform N application method. 

The variable-rate system used optical sensors to detect plant canopy spectral reflec

tance in the field. The optical reflectance measurements were used by the system’s 

controller through the algorithm to calculate the N needs on each 0.37 m2 grid in 

real time in situ and applied the N fertilizer according to the needs on-the-go. The 

experiments were conducted in wheat crops for three growing seasons across nine 

locations in Oklahoma, USA. They found that the mean net returns with the sensor-

based variable-rate N application system were not statistically different from the net 

returns using the conventional uniform N application methods. The sensor-based 

VRA system used by Biermacher et al. (2009) was modified in the size of sensing 

grid and the algorithm for determining the on-the-go N application rate in wheat. 

Using the sensing method and the algorithm used in the modified VRA system, 

Boyer et al. (2011) did a similar study and obtained similar results. 

6.2.4  CHALLENGES  AND RESEARCH NEEDS 

Variable-rate fertilization technology has been developed for more than 20 years. 

Currently, various types of equipment and control devices for variable-rate fertil

izer application are available on the market. Some producers have used variable-rate 

fertilizer application for crop production. However, the adoption of this technology 

has been slow. There are many reasons for the slow adoption. The main reason is 
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probably that the lack of sufficient evidence to demonstrate that variable-rate fer

tilization can significantly increase net returns in crop production. Some research 

has shown that adoption of variable-rate fertilization could provide positive eco

nomic returns, but results vary depending on how the technology is used and what 

the specific field conditions are. The uncertainty of the profitability and the cost of 

implementation are some of the producers’ concerns about investment in variable-

rate fertilization technology. To address these concerns to accelerate the adoption 

of this technology, further research needs to be conducted in the following aspects: 

(1) development of low-cost variable-rate components (i.e., sensors, controllers, and 

actuators) and integration of these components into/with existing fertilizer appli

cation equipment; (2) development of low-cost and easy-to-use tools to determine 

site-specific fertilizer application rates and create prescription maps so that field 

profitability can be enhanced more effectively with minimum inputs; and (3) long-

term systematic studies on the economic feasibility and environmental impacts of 

variable-rate fertilization. 

6.3 PRECISION CROP PEST MANAGEMENT 

Pesticides are widely used to control a variety of crop pests to minimize yield loss 

and quality reduction in crop production. The three major types of crop pests tar

geted by pest application are insects, weeds, and diseases. Pesticides (i.e., insecti

cides, herbicides, and fungicides) are commonly applied by ground-driven sprayers 

or aerial applicators. Traditional uniform pesticide application has been commonly 

used for pest control, though VRA may be more appropriate for the management of 

certain patchy weeds and diseases. Since insects are mobile within and across fields, 

traditional uniform application may be appropriate. This section will discuss the 

approaches to variable-rate pest management and some research and commercial 

activities on the use of VRT for the control of crop weeds and diseases. 

6.3.1 VARIABLE-RATE PESTICIDE APPLICATION METHODS 

The map-based and sensor-based methods also apply to variable-rate pesticide appli

cations. Both methods require the application rates to be determined based on site-

specific conditions, though only the map-based method requires a prescription map. 

The selection of the application methods depends on whether the pest can be identi

fied and correct application rates determined quickly on-the-go. 

Pest distribution and density over space and time are not uniform and can be 

affected by a variety of factors. Some crop pests occur randomly within a field, 

while others tend to occur in similar patterns spatially and temporally. For example, 

some weeds often occur in aggregated patches of varying size or in stripes along 

the direction of cultivation (Thornton et al., 1990; Gerhards and Christensen, 2006; 

Christensen et al., 2009). If pest occurrences are consistent in density and locations 

over years, maps from previous years can be used to regulate pesticide applications 

in subsequent years. Otherwise, either sensor-based VRA can be used for real-time 

pest control or map-based control can be used within the season if pest maps can be 

quickly generated using ground-based sensors or remote sensing imagery. 
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The key to the implementation of variable-rate pesticide application is to generate 

pest maps or to detect pest presence on-the-go. Several techniques such as grid sam

pling, ground-based spectral sensors, and remote sensing can be used to document 

the distribution and intensity of weeds or diseases within fields during the growing 

season. The maps derived from these methods can be used for both within-season 

and postseason control. Yield maps from yield monitors can also be used to map the 

distribution of a pest if that pest causes a significant yield loss. For real-time con

trol, ground-based soil organic matter sensors can be used with VRA preemergence 

herbicides because the amount of soil organic matter influences the effectiveness 

of some herbicides, often mentioned on the label. Ground-based spectral sensors 

or digital cameras can be used to detect the presence of weeds or fungi for VRA of 

herbicides or fungicides. 

6.3.2  VARIABLE-RATE CONTROLLERS 

VRA will not affect the basic functions of existing pesticide applicators. The 

required changes will be necessary to accommodate the addition of a task com

puter, a GPS receiver, a controller, sensors, and valves. There are different types of 

control systems on the market that are adaptable to precision application, including 

flow-based control of a tank mix, chemical injection control, and chemical injection 

control with carrier control (Humburg, 2003). The flow-based control of a tank mix 

is the simplest of the three and it combines a flow meter, a ground speed sensor (or 

GPS speed), and a controllable valve (servo valve), with an electronic controller to 

apply the desired rate of the tank mix. These systems can make rate changes across 

the boom quickly. However, the changes in flow rate directly affect the pressure to 

be delivered to the spray nozzles. This can result in large changes in droplet size in 

the spray when the commanded flow rate is outside the best operating range for the 

nozzles. 

Direct injection of the chemical into a stream of the carrier (water) uses the con

troller and a chemical pump to manage the rate of chemical injection rather than 

the flow rate of a tank mix. The flow rate of the carrier is usually constant, and 

the injection rate is varied to accommodate changes in the commanded application 

rate. However, the principal limitation of chemical injection systems without car

rier control is the transport delay from the injection point to the application nozzles 

(Tompkins et al., 1990; Sudduth et al., 1995). 

Chemical injection with carrier control can overcome some of the limitations 

and have many of the advantages of both of the earlier systems, but it requires that 

the control system change both the chemical injection rate and the water carrier 

rate to respond to application rate changes. One control loop manages the injection 

pump, while a second controller operates a servo valve to provide a matching flow 

of water. Chemical injection with carrier control will result in less application error 

than chemical injection without carrier control because carrier control minimizes 

the concentration variations to within dynamic response differences between the 

two subsystems, thus reducing the effect of transport delays (Steward and Humburg, 

2000). Nevertheless, the range of carrier control is limited to the workable pres

sure range of the nozzles. With the advent of PWM nozzles (Giles et al., 1996) and 



 

 

 

 

 

 

 

 

 

 

188 Precision Agriculture Technology for Crop Farming 

variable orifice nozzles (Bui, 2005), the range of flow rates has been expanded while 

minimizing changes in droplet size. 

Several agricultural equipment vendors, including Raven Industries, Micro-Trak, 

Mid-Tech, and DICKEY-john, started to provide these variable-rate controllers in 

the 1990s. Many of the controllers have been adapted to existing applicators for 

variable-rate pesticide applications. Meanwhile, numerous research activities have 

continued on the development and evaluation of variable-rate pesticide application 

systems (Al-Gaadi and Ayers, 1999; Han et al., 2001; Dammer et al., 2009; Liu et al., 

2014). More advanced variable control systems have been developed in the last 20 

years and are available from more vendors. 

6.3.3  VARIABLE-RATE PEST MANAGEMENT ACTIVITIES 

6.3.3.1 Herbicide  Application 
Reductions in herbicide use achieved with site-specific applications depend on the 

distribution and density of weeds in the field. In an evaluation of site-specific poste

mergence weed control of broadleaf and grass weeds in corn based on grid sampling-

derived prescription maps, Williams et al. (2000) showed a reduction of herbicide 

use by 11.5%–98.0% compared with conventional herbicide spraying. Throp and Tian 

(2004) used a weed map developed from remote sensing imagery for variable-rate 

herbicide treatments in a soybean field. Of the four herbicide treatments, the VRA 

performed the best when considering both weed kill effectiveness and herbicide use 

efficiency. Koller and Lanini (2005) evaluated variable-rate herbicide applications 

based on weed infestation maps developed from the previous year using grid sam

pling. Their results showed that when either the weed seedling map or the mature 

weed map was used, weed control in terms of subsequent weed cover was compara

ble to uniform herbicide application, while the total amount of herbicide applied was 

reduced by 39% for the seedling map and 24% for the mature weed map. Nolte et al. 

(2011) reported that site-specific placement of herbicide in a field with nonuniform 

soil textures reduced levels of seedling injury by 30% in regions of the experimental 

field where soil texture was classified as light or sandy, while application rates were 

35% lower than the standard rate with no significant differences in weed control. 

Detection of weeds in agricultural crops using airborne and satellite imagery 

has been a challenge due to the similarity in spectral reflectance between weed and 

crop plants and the complex interaction among crop, weed, and soil background. 

Therefore, other research has focused on the use of ground-based sensors for weed 

detection and variable-rate herbicide application. Shearer and Jones (1991) used 

photoelectric sensing to detect weeds between crop rows and to activate a spray 

nozzle on a ground-based spray system. Testing in soybeans showed a 15% reduc

tion in herbicide usage with no compromise in weed control. Hanks and Beck (1998) 

investigated two commercial photoelectric sensor-based systems, the Detectspray 

Model S-50 and the WeedSeeker Model PhD 1620, and field testing of the two 

systems showed a 63%–85% reduction in herbicide use with no significant loss in 

weed control. 

Photoelectric sensors can be easily incorporated into variable-rate herbicide 

application systems, but this type of sensor cannot distinguish weeds from crop 
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plants and is generally limited to the detection of significant weed cover between 

crop rows. Therefore, ground-based weed sensors using machine vision technology 

have been investigated. In machine vision, images are collected with ground-based 

cameras and then classified to distinguish weeds from crop and soil background 

using image processing techniques. Although most of the studies in this area have 

focused on the evaluation of different color indices, morphological or texture param

eters, and complex algorithms for segmentation of weeds under naturally variable 

lighting conditions, only a few machine vision-based weed sensing systems have 

been tested for real-time herbicide application. Giles and Slaughter (1997) devel

oped a machine vision-guided precision band sprayer for small plant foliar spraying. 

The system reduced application rates by 66%–80% and increased spray deposition 

efficiency on the target plants by 2.5–3.7 times greater than conventional broadcast 

spraying. Tian (2002) integrated a real-time machine vision sensing system and indi

vidual nozzle controlling devices with a commercial map-driven herbicide sprayer 

to create an intelligent weed sensing and spraying system. Field experiments showed 

that the integrated system operated with a 91% overall delivery accuracy and that 

potential herbicide savings ranged from 52% for one single threshold to 71% for four 

threshold levels under normal weed conditions. 

6.3.3.2   Fungicide Application 
Depending on types of pathogens and their spatial patterns, disease management 

plans differ greatly. The pattern of infection may be random for wind-dispersed or 

seed-borne diseases. For soilborne diseases, primary disease patterns may reflect 

previous disease occurrence in the field. If patterns of diseases or disease risk are 

predictable and stable between years, site-specific fungicide application can be 

implemented using the previous year’s or current year’s maps. On the other hand, if 

disease patterns vary from year to year, only the current year’s maps or sensor-based 

real-time application can be employed. Bjerre et al. (2006) provided an overview of 

site-specific management of crop leaf pathogens based on canopy spectral reflec

tance and remote sensing imagery with VRT. Similar to weed management, grid 

sampling, ground-based sensors, and airborne and satellite imagery can be used to 

map the distribution and severity of various diseases. 

Any pest that causes sufficient plant stress to distort the reflectance characteristics 

of crop foliage is a candidate for detection by means of remote sensing. Airborne 

and spaceborne imagery has been widely used to detect and map a large number 

of crop diseases, but early detection remains difficult to impossible. By the time 

disease symptoms can be detected on the remote sensing imagery, damage could 

have already been done to the crop in many cases. For some diseases, this may be 

early enough to take control measures to minimize the damage; for others, it may 

be too late to correct the problem within the season. However, remote sensing imag

ery obtained in the current season can be useful for the management of recurring 

diseases, such as soilborne fungi, in the following seasons. Another challenge for 

remote sensing detection of crop diseases is that multiple biotic and abiotic condi

tions may coexist and produce similar effects on the color, geometry, or vigor of 

the upper crop foliage. Crop diseases and insects and some soil problems can all 

cause morphological (wilting or stunting) and physiological (chlorosis, darkening, or 
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dehydration) changes in a crop. If only one dominant disease occurs or if multiple 

diseases or stresses with distinctive symptoms are present, remote sensing imagery 

will be able to discriminate the infected areas; otherwise, discrimination of the dis

eases may be possible with additional knowledge of the dynamic behaviors of the 

diseases or other stresses and relevant information of the specific soil and crop con

ditions. Moreover, high spatial resolution multispectral and/or hyperspectral imag

ery taken at multiple times may be necessary. As remote sensing imagery with finer 

spatial and temporal resolution is becoming more available and less expensive, it 

will present a great opportunity for both growers and researchers to more effectively 

use this data source for the detection of crop diseases. Many crop diseases have 

been identified as good candidates for remote sensing, but practical procedures for 

farming operations are still lacking. Efforts need to be devoted to the development 

of operational methodologies for detecting and mapping these candidate diseases. 

Meanwhile, more research is needed to evaluate more advanced imaging systems 

and image processing techniques for distinguishing the diseases that are difficult to 

detect or occur with other stresses. 

Although remote sensing has been successfully used to detect many diseases,  

very few ground-based disease detection sensors are available for real-time site-

specific fungicide application. However, plant cover sensors that may indirectly indi

cate potential disease occurrence have been used to regulate fungicide application 

before the onset of disease symptoms. Dammer and Ehlert (2006) evaluated a plant 

cover sensor (CROP-Meter) for real-time VRA of fungicides against cereal diseases 

and they achieved a savings of 7%–38% over 11 fields without negative influences 

on yield and disease occurrence. The sensor’s signal was correlated with the leaf 

area index (LAI), which was then used to regulate the application rate based on the 

assumption that there is a tendency for higher disease occurrence in dense canopies 

for some diseases such as powdery mildew. However, this relatively simple method 

of controlling fungicide application does not take into account the differences in 

disease distribution. Dammer et al. (2009) incorporated a decision support system 

into the previous CROP-Meter-based variable-rate fungicide application system. The 

decision support system was used to create a map of management zones considering 

infection probabilities for fungal diseases using weather data and field-specific data. 

The application rates within these management zones were further adjusted based 

on the CROP-Meter measurements of local vegetation differences. Compared with 

conventional uniform spraying, variable-rate treatment with the plant cover sensor 

resulted in fungicide savings from 13.9% to 32.6% with a decision support map and 

from 11.1% to 20.3% without the decision support map. 

Higher levels of biomass (thicker rice) are more likely to have higher incidences 

of sheath blight. Baker and Meggs (2006) compared two fungicides (Quadris and 

Stratego) at variable rates by NDVI zone derived from multispectral imagery and 

conventional blanket application. Savings averaged $2.59/ha ($1.05/ac) for Stratego 

in rice, $25.62/ha ($10.37/ac) for Quadris in rice, and $8.48/ha ($3.43/ac) for Quadris 

in soybeans after all costs for flying and imagery were factored. Follow up with the 

farmers on the rice fields with variable-rate fungicide applications indicated yields 

to be at or above 5-year averages, with good milling quality. 
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Fungicide application can be regulated according to canopy density as previously 

discussed or according to disease incidence. When a critical threshold for a disease 

is exceeded, fungicides have to be sprayed immediately because some pathogens 

can quickly spread throughout the crop canopy. For some diseases, such as rusts and 

powdery mildew, early detection and variable-rate treatment may be appropriate. 

For some diseases that tend to spread quickly, treatment decisions based solely on 

disease observation may not be sufficient. In this case, uniform application may be 

more appropriate. 

Some diseases tend to occur in similar spatial patterns within fields over years. 

Site-specific treatment can be performed before the onset of the disease based on 

previous years’ infection maps. One such disease is cotton root rot that is caused by 

the soilborne fungus Phymatotrichopsis omnivore. Cotton root rot is a serious and 

destructive disease that has affected cotton production in the southwestern and south 

central United States for over a century. Recent research has shown that the commer

cial fungicide Topguard (flutriafol) is able to control the disease (Isakeit et al., 2010). 

Yang et al. (2005, 2012) monitored and mapped the progression of cotton root rot 

within and across growing seasons in south and central Texas using airborne multi-

spectral imagery, as infected plants had higher red reflectance and lower NIR reflec

tance compared to noninfected plants. The imagery from 2010 to 2014 along with the 

image data collected from 2000 to 2002 has demonstrated that cotton root rot tends 

to occur in the same general areas within fields over recurring years, though other 

factors such as weather and cultural practices may affect its initiation and severity. 

This recurrent pattern of cotton root rot incidence should provide the producer with 

greater confidence to use aerial imagery for making site-specific treatment decisions. 

Figure 6.3 shows two color-infrared images of a 105-ha (260-ac) cotton field near 

Edroy, Texas, over a 10-year period. The estimated percent infection areas were 17.0% 

in 2001 and 17.5% in 2011 under natural conditions. The overall infection patterns 

between 2001 and 2011 were similar, though there were changes in the locations of 

infected areas. A change detection analysis showed that 9.0% of the field was infected 

in both years, while 8.0% of the field was infected only in 2001 and 8.5% only in 2011 

in addition to the common infection areas. Thus, a total of 25.5% of the field was 

infected in either 2001 or 2011. To accommodate the potential variation of the infec

tion, if a 5-m buffer is created around the infected areas on the overlaid map, about 40% 

of the field should be treated. Treatment plans for this disease should be simply on/off 

application and multiple levels of treatment are not necessary. Considering the cost of 

the fungicide flutriafol at $124/ha ($50/ac) for the recommended rate of 2.4 L/ha (32 oz/ 

ac), site-specific treatment will reduce fungicide use by 60% and the savings from fun

gicide reduction will be $74/ha ($30/ac) per year for this particular field. Research is 

currently undergoing to demonstrate to cotton growers in Texas how to adapt variable-

rate controllers to their existing applicators for site-specific flutriafol application. 

6.3.4  CHALLENGES  AND RESEARCH NEEDS 

Field results have demonstrated that variable-rate pesticide application is appropriate 

and potentially profitable for managing crop weeds and fungal diseases. Although 
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FIGURE 6.3  (See color insert.) Color-infrared images taken in (a) 2001 and (b) 2011  

and (c) overlaid classification map for an irrigated cotton field infected with root rot near  

Edroy, Texas. (Adapted from Yang, C., C.J. Fernandez, and J.H. Everitt. 2005. Transactions  
of the ASAE, 48(4):1619–1626; Yang, C. et  al. 2012. Proceedings of the Beltwide Cotton  
Conferences, Memphis, TN: National Cotton Council of America, pp. 475–480.) 

the individual technologies required to implement site-specific pesticide application 

are available, it is still a challenge to integrate these technologies for either a weed 

or a disease management system. How to accurately and reliably detect weeds and 

diseases or to predict their risk and pressure for either real-time sensor-based appli

cation or map-based application remains to be a major challenge. Producers do not 

want to see critical weeds and diseases left untreated in their fields. Treatment deci

sions have to take into account the potential expansion of the targeted pest. Not all 

the weeds or diseases are good candidates for VRA and traditional uniform applica

tion remains very effective for many crop pests. More research is needed to identify 

relevant weeds and diseases for which site-specific management will be both techni

cally feasible and economically profitable in the long term. 
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6.4  PRECISION WATER MANAGEMENT 

Irrigation plays a key role in agriculture production. Irrigated lands produce approx

imately 40% of the world’s total food on 17% of its cropped lands (Fereres and 

Connor, 2004). In the United States, irrigated agriculture is a major consumer of 

freshwater, accounting for 80% of the nation’s consumptive water use. Irrigation is 

essential for crop production in arid and semiarid regions. However, in recent years, 

the acreage of irrigated land has increased rapidly in humid regions due to the uncer

tainty in the amount and timing of precipitation. For example, crop producers in the 

Mid-South region of the United States, which has approximately 1300 mm annual 

precipitation, have become increasingly reliant on supplemental irrigation to ensure 

adequate yields and reduce risks of production losses due to water stress during the 

crop growing season. Increasing groundwater withdrawals are resulting in a decline 

in the aquifer levels across the region. Global agricultural production is facing a seri

ous shortage of water. Improved irrigation technologies are needed to increase water 

use efficiency for sustainable use of water resources. 

There are various irrigation methods, including surface irrigation, sprinkler irri

gation, and microirrigation. A sprinkler irrigation system utilizes sprinkler nozzles 

to distribute irrigation water under pressure. Compared to surface irrigation meth

ods, sprinkler irrigation can significantly improve irrigation efficiency. Majority of 

the sprinkler irrigation systems in production agriculture are center pivot systems. 

As described in the previous chapters, soil and plant characteristics in agricultural 

fields can vary considerably within a field. It is desirable to treat the plants based on 

the plant needs at each specific location of the field. Precision agriculture technolo

gies allow farmers to make site-specific adjustment of production inputs for optimal 

profit. Variable-rate irrigation (VRI) can be used for optimizing irrigation water use 

efficiency. 

6.4.1 VRI CONCEPT 

VRI technologies were designed to site-specifically apply irrigation water at variable 

rates within the field to adjust the temporal and spatial variability in soil and plant 

characteristics. VRI is normally implemented on self-propelled center pivot and lin

ear move sprinkler irrigation systems. Similar to other VRA systems in precision 

agriculture, VRI practices require hardware and software. VRI hardware require

ments include a GPS receiver to determine the spatial position of the irrigation sys

tem and an intelligent electronic device to control individual sprinklers or groups of 

sprinklers to deliver the desired amount of irrigation water on each specific location 

within the field according to VRI prescription. The software required includes the 

algorithms to calculate the water application rates and the computer programs to 

create VRI prescription maps. 

Currently, two primary control methods are used to realize VRI: speed control 

and duty-cycle control (LaRue and Evans, 2012). The speed control method changes 

the travel speed of the sprinkler irrigation system to vary the water application depth. 

As the other operation parameters of the irrigation system remain constant, the water 

application depth is inversely proportional to the travel speed of the system in the 
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field. This means the higher the travel speed, the lower the water application depth. 

Although the speed control method is easy to implement and inexpensive, it is only 

able to vary the application rate in the travel direction of the irrigation system, not 

along the lateral pipeline, resulting in difficulty to develop VRI randomly shaped 

management zones to address the variability of soil and plant characteristics across 

the field. The duty-cycle control method changes the duty cycle of individual sprin

klers or groups of sprinklers installed along the lateral pipeline. As the VRI system 

moves in a constant speed, the GPS receiver determines the system’s position in the 

field. Then, using a preloaded VRI prescription map or the real-time information col

lected from the field, the VRI controller adjusts the on/off time of the sprinklers to 

achieve the desired water application rate. The duty-cycle control method is capable 

of varying the irrigation rate in the system’s travel direction and along the lateral 

pipeline, which offers the flexibility in the development of the management zone. 

6.4.2 VRI CONTROL 

Studies on the development of controls for VRI using the sprinkler irrigation systems 

have been conducted since the 1990s. A few of these studies are reviewed as follows. 

Fraisse et al. (1992) evaluated the feasibility to apply different irrigation water depths 

using solenoid valves to control the flow to each sprinkler head or set of sprinkler 

heads. Performance of the low sprinkler heads and solenoid valves subjected to rapid 

pulsing was tested in the lab. Their results indicated that water distribution pattern of 

the sprinkler heads was not significantly affected at a pulsing frequency of 1 cycle/ 

min or higher, and the electrical solenoid valves could be employed to vary water 

application depth with self-propelled sprinkler irrigation systems (Fraisse et  al., 

1995a,b). McCann and Stark (1993) patented a method and apparatus for site-specific 

application of irrigation water and chemicals using center-pivot or linear-moving 

sprinkler irrigation systems. Evans et al. (1996) discussed site-specific applications 

of irrigation water and chemicals using self-propelled irrigation systems coupled 

with climatic data, soil properties, and plant growth conditions. Camp et al. (1997) 

and Omary et al. (1997) reported their work on the development of a site-specific 

center pivot irrigation system for precision management of water and nutrients. They 

added three parallel manifolds in each segment along the main pipeline of a com

mercial center pivot system. The manifolds and nozzles were sized to provide 1×, 2×, 

and 4× nominal application rate. Using a programmable logic controller, the three 

manifolds could be operated individually or in various combinations to provide eight 

application rates. Comparing the measured water delivery to the designed param

eters, this VRI system was able to deliver water to the control zones at rates very 

close to the design (Stone et al., 2006). 

A prototype center pivot VRI system was developed by researchers at the 

University of Georgia and the Farmscan group (Perth, Western Australia). The VRI 

system changed irrigation water application rates by cycling sprinklers on and off 

and by varying the center pivot travel speed (Perry et al., 2003). Performance of this 

prototype VRI system was evaluated. The results showed uniformity coefficients of 

the system, with application rates of 20%, 80%, and 50%, were 86%, 94%, and 95%, 

respectively. King et al. (1998) patented a variable-flow-rate sprinkler head. In their 
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invention, the sprinkler nozzle size was reduced by inserting a retractable concen

tric pin into the nozzle bore. The flow rate of the nozzle could be varied by cycling 

the concentric pin in and out of the nozzle bore using a linear actuator such as an 

electric solenoid. Following this approach, King and Kincaid (2004) constructed 

and tested prototypes of the variable-flow-rate sprinkler for site-specific irrigation 

management. The lab test results showed that cycling insertion of the concentric pin 

in the sprinkler nozzle bore was able to vary a time-averaged flow rate over a range 

of 36%–100%. The prototypes of this variable-flow-rate sprinkler were also tested in 

field on a three-span linear-move irrigation system to evaluate the water application 

uniformity (King et al., 2005). It was found that the application uniformity was equal 

to or greater than 90% with the tested application rates. Han et al. (2009) developed 

a variable-rate lateral irrigation system. To vary the irrigation water application rate, 

they used the pulsing system described by Perry et al. (2003) to control the duty cycle 

of individual sprinklers or groups of sprinklers and a speed control system to change 

the travel speed of the lateral irrigation system. 

Evans et  al. (2010) reported their work on the development of a site-specific 

irrigation system. The site-specific system was tested on a linear move sprinkler 

system. Results indicated that the site-specific system was capable of switching 

between midelevation spray application (MESA) and low-energy precision appli

cation (LEPA) irrigation methods and varying water application depths according 

to the defined location in the field. Pierce et al. (2006) and Chávez et al. (2010a,b) 

developed and tested a remote irrigation monitoring and control system (RIMCS) 

for continuous move systems. The RIMCS was installed on a linear move irriga

tion system for site-specific irrigation. Coupled with a GPS receiver, a single board 

computer (SBC) with wireless Ethernet was employed to control sprinkler nozzles 

through solenoids to vary irrigation water application rates according to irrigation 

prescription maps. The SBC could wirelessly communicate with a remote server. 

The RIMCS was also able to monitor the irrigation system performance and soil and 

crop conditions through wireless sensor networks. 

Sprinkler irrigation systems equipped with VRI controllers are now commercially 

available. Figure 6.4 shows a center pivot VRI system manufactured by Valmont 

Industries in 2011. The VRI zone control package of this system includes five VRI 

zone control units, a GPS receiver, and computer software. Each VRI zone control 

unit controls the duty cycle of the sprinklers in two independent zones by turning 

electric solenoid valves on and off to achieve desired application depths in individual 

zones. The GPS receiver determines the pivot’s position in the field for the identifica

tion of control zones in real time. The VRI prescriptions could be created using the 

software and wirelessly uploaded to the system’s control panel. The performance 

status of the system could be remotely monitored using a smart device such as a 

smart phone (Sui and Fisher, 2014). 

6.4.3 APPLICATION UNIFORMITY TEST 

Some work has been reported on the evaluation of commercial VRI system perfor

mance. Perry et al. (2004) and Dukes and Perry (2006) tested the uniformity of cen

ter pivot and linear move VRI systems in Georgia and Florida, USA. They reported 
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FIGURE 6.4   A center pivot variable-rate irrigation system running at the research farm of  

USDA-ARS Crop Production Systems Research Unit in Stoneville, Mississippi, USA. 

that both the sprinkler cycling rate and the travel speed of the VRI systems had no 

significant effect on the uniformity of irrigation water application. O’Shaughnessy 

et al. (2013) tested the uniformity of two center pivot VRI systems in a windy loca

tion in Texas, USA with five application rates ranging from 30% to 100%. The test 

results showed that uniformity coefficients at different application rates varied from 

84.4% to 90.8% with an average of 88.8%. Sui and Fisher (2014) evaluated the uni

formity of the center pivot VRI system shown in Figure 6.4. They found that the 

average coefficient of uniformity over the application rates of 30%, 50%, 70%, and 

100% was 84.3%. The effect of application rate on the uniformity was significant, 

with higher application rates providing higher uniformity. The uniformity of a con

trol zone could be influenced by the overlap of sprinkler coverage between the adja

cent control zones. 

6.4.4  CHALLENGES  AND RESEARCH NEEDS 

Even though research efforts on VRI have been made for more than 20 years, adop

tion of this technology by producers for agriculture production has been quite lim

ited. There are about 175,000 center pivot and linear move sprinkler systems in the 

United States. However, there are only about 200 sprinkler systems that have zone 

control VRI capacities in the United States, and about 500 speed control VRI sys

tems around the world (Evans et al., 2013). 

The slow adoption of VRI technologies could be due to a number of reasons. The 

main reason could be that the economic benefits gained by VRI technologies are still 

not very clear to producers and irrigation industries. There is very little scientific 

information documenting that the VRI technologies conserve water or energy on a 
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field scale for crop production (Evans and King, 2012). More research is needed to 

demonstrate that the adoption of VRI technology for water, and nutrient manage

ment will increase farming profit and protect the environment. Evans et al. (2013) 

pointed out the needs and tools required to encourage adoption of VRI technologies, 

including (1) low-cost, reliable variable equipment such as frequency pump motors, 

solenoid valves, and pressure regulators; (2) guidelines and tools to assist consul

tants and producers to develop management zones and write VRI prescriptions; (3) 

guidelines for placement of sensor networks and use of the information from the 

sensors installed across the fields; (4) easy-to-use basic, generalized decision support 

systems for VRI in both humid and arid regions; and (5) technical assistant training 

on VRI technologies for producers, consultants, and other relevant personnel. 

6.5 PRECISION TECHNOLOGIES FOR SPECIALTY CROPS 

Specialty crops are defined in law as “fruits and vegetables, tree nuts, dried fruits, and 

horticulture and nursery crops, including floriculture” (USDA, 2014). Plants commonly 

considered fruits and tree nuts include apple, avocado, banana, blueberry, citrus, cherry, 

coconut, coffee, cranberry, grape (including raisin), kiwi, mango, nectarine, olive, 

papaya, peach, pear, pecan, persimmon, pineapple, pistachio, raspberry, strawberry, 

and walnut. Some of the common specialty vegetable crops include artichoke, aspara

gus, bean, beet, broccoli, Brussels sprouts, cabbage, carrot, celery, chives, cucumber, 

eggplant, garlic, horseradish, leek, lettuce, melon, mushroom, pea, onion, pepper, 

potato, pumpkin, radish, spinach, squash, sweet corn, sweet potato, taro, tomato, and 

watermelon (USDA, 2014). 

Among these crops, the following are grown in large-scale production in the 

United States: apple, blueberry, citrus, cranberry, grape, peach, pecan, pistachio, 

strawberry, walnut, lettuce, potato, sweet corn, and tomato. However, compared to 

traditional grain crops, specialty crop productions are relatively small in scale; there

fore, precision technologies for specialty crops have not been well developed and 

are still in developmental stages. Crop management practices are also different, and 

thus more creative approaches and solutions are needed. This section reviews some 

precision technologies used for precision fertilization, water management, and crop 

pest management for specialty crop production. Some other related research activi

ties with application examples are also discussed. 

6.5.1  PRECISION FERTILIZER  AND PESTICIDES APPLICATION 

To correctly prescribe proper fertilizer amounts for tree crops, it is vital to quantify 

the canopy volume. In the early 2000s, Tumbo et al. (2002) conducted a study to 

compare manual canopy volume measurements with those by ultrasonic and laser 

sensors for citrus production. They reported that the laser sensor yielded better results 

than those by the ultrasonic sensor due to a higher resolution, and was also faster in 

acquiring data. However, both sensors showed good potential in automatic canopy 

measurements. Then, Zaman et al. (2005) measured citrus tree canopy sizes using 

ultrasonic sensors with a differential global positioning system (DGPS) receiver, 

and used them for creating prescription maps for variable-rate nitrogen fertilizer 
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applications. They used a commercial granular fertilizer spreader (MidTech Legacy 

6000) for variable-rate nitrogen application, and reported cost savings of 38%–40% 

compared to uniform applications. Also, Miller et al. (2005) conducted a field trial 

for a commercial VRT controller with a spinner disk pull-type granular fertilizer 

spreader in a 16-ha citrus grove during the 2002–2004 fruit seasons. They tested 

the spreader with a prescription map and photocell-based canopy sensing. The total 

amount of applied granules was compared between actual applied and weighed 

amounts, and they found an average absolute difference of 8%. Also, they compared 

actual application rates with target rates, and found a good agreement between them 

with a coefficient of determination of 0.98. 

Further, Schumann et al. (2006) investigated the performance of a variable-rate 

fertilizer spreader in a citrus grove, where tree sizes measured from an ultrasonic 

sensor were used to determine application rates. Six different nitrogen rates were 

applied variably throughout the grove, while actual application rates were calculated 

using gear tooth speed sensors by monitoring the conveyer chain speed. They found 

that there were time lags in the system due to the spreader’s response time, the DGPS 

receiver latency, and the time to read the prescription map, and those lags made 

the system inappropriate for single-tree variable-rate fertilization. They reported an 

average on–off response time of the spreader was less than 3 s, and an average time 

for changing rates was between 2 and 5 s. Zaman and Schumann (2006) conducted a 

study to find out important soil properties affecting citrus tree growth, and to imple

ment variable-rate soil amendment applications by dividing the grove into different 

management zones using the identified soil properties. They reported that manage

ment zones could be well divided by the NDVI and soil organic matter contents for 

implementing VRA of elemental iron and dolomite. 

Instead of measuring canopy volume for citrus, another study was conducted 

using spectral characteristics to determine fertilization application rates, instead of 

analyzing leaf samples for nitrogen concentration in a laboratory. Min et al. (2008) 

developed a hyperspectral citrus leaf nitrogen sensing system using detector arrays 

in 680–950 nm and 1400–2500 nm, linear variable filters, a halogen light source, a 

longpass filter, and data acquisition cards. The detector arrays showed a very good 

linearity between integration time and voltage outputs (r > 0.99), and stabilities 

within ±0.1% and ±0.5% for the two sensors. They reported a root mean square dif

ference (RMSD) of 1.69 g/kg in predicting citrus leaf nitrogen contents. 

For apple production, Sharda et al. (2014) investigated spray coverage of various 

emitters using a solid set canopy delivery (SSCD) system for tree crops, which can 

be used for providing precise pesticide applications and reducing pesticide drift. Six 

different emitters were studied with four mounting configurations (upper side and 

underside of leaves). Based on spray depositions on water-sensitive paper cards, they 

found that an 80° hollow cone emitter produced the best coverages of 58% for the 

upper side and 21% of the underside of leaves. 

In another study for blueberry production, Esau et al. (2014) developed a proto

type variable-rate sprayer for spot application of herbicides in wild blueberry pro

duction. The prototype consisted of digital color cameras, a variable-rate controller, 

solenoid valve nozzles, a height sensor, and a pocket PC, which were mounted on a 

tractor. Based on 97 weed patches mapped in a trial field, they reported that weed 
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areas were reduced from 28% to 3% after herbicide application, and that the sprayer 

performed well with a 69% herbicide savings. 

6.5.2 WATER MANAGEMENT 

For tree and vine crops, microsprinkler irrigation is commonly used in the United 

States. Boman et al. (2012) described the current status of microsprinkler irrigation 

in the United States, which is commonly used for better freeze protection and more 

savings in water, energy, and fertigation than other irrigation methods. Especially, 

microsprinkler irrigation can be used for automatic irrigation along with real-time 

moisture sensors. 

Torre-Neto et  al. (2001) demonstrated an automated microsprinkler irrigation  

system for citrus for VRI using tensiometers, temperature sensors, and RJ-485 

communication standard. They reported that the system performed well with lower 

power consumption and potential significant water savings. Further Torre-Neto et al. 

(2005) presented hardware implementation of wireless sensor and actuator nodes,  

field stations, a base station for automated and spatially variable irrigation in a six 

hectares grove for citrus production in Brazil. Parsons et al. (2010) utilized capaci

tance moisture sensors to implement an automatic irrigation system for citrus. They 

installed the sensors at five different depths in an orange grove in Florida to trigger 

microsprinkler irrigation, which could be adjusted by soil type, season, and grower’s 

preference. In Israel, a similar system was also developed for apple production using 

tensiometers (Meron et al., 2001). 

For nectarine production, Coates et al. (2006) developed a variable-rate micro-

sprinkler irrigation system for precise irrigation and automatic detection of faulty 

drip lines and damaged emitters. Based on monitoring line pressure, the system 

automatically turned off the microsprinklers when there were any drip line damages 

or breaks. The system was able to variably apply water across the orchard. 

For cranberry production, Pelletier et al. (2013) conducted a study to determine 

the relationship between cranberry yield and soil water potential to determine the 

irrigation threshold. They tried three different water treatments (wet, dry, and con

trol) and found that the dry treatment saved irrigation water by 21%–93% com

pared to the control, and that yield was affected depending on soil water potential 

thresholds. 

For detecting water stress in almond, walnut, and grape, Dhillon et  al. (2014) 

developed a mobile sensor system (Figure 6.5) to predict water status using an infra

red thermometer and sensors for measuring microclimatic conditions (photosynthet

ically active radiation, air temperature and humidity, and wind speed). Using leaf 

temperature and the microclimatic conditions, they conducted a stepwise regres

sion and a canonical discriminant analysis to predict water stressed and unstressed 

leaves, and reported misclassification errors ranging from 1.6% to 9.6%, indicating 

the feasibility of using the developed sensor system for managing irrigation. 

As an alternative irrigation method, Lamm et al. (2012) overviewed subsurface 

drip irrigation (SDI), which has been used since the 1960s. They suggested the use of 

an RTK GPS receiver to accurately place drip lines. One of the advantages of the SDI 

is that it enables irrigation of tree crops such as walnuts and almonds without wetting 
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FIGURE 6.5   Mobile sensor suite for measuring leaf temperature and microclimatic condi

tions. The pressure chamber was used to measure midday stem water potential for validation 

of the results. (From Dhillon, R. et al. 2014. Transactions of the ASABE, 57(1):297–304. With  

permission.) 

the harvested nuts while they are being dried on the ground. They discussed chal

lenges in design, installation, operation, management, cropping, and maintenance. 

For specialty crop production, SDI can provide uninterrupted management prac

tices, including multiple harvests, spraying, mowing, and tilling, and reduce weed 

germination. 

6.5.3  CROP PEST MANAGEMENT 

There have been many studies for specialty crop disease detection. For tomato, 

Zhang et al. (2005) explored the feasibility of utilizing airborne multispectral imag

ing to detect tomato late blight disease. They developed the following five vegetation 

indices using red (R) and NIR bands, and also spectra collected by a handheld spec

trometer from the field: R, NIR, NIR/R, NIR-R, and NDVI. With cluster analysis 

and classification process, they were able to identify the diseased plants with an 

average accuracy of 87%. 

Multiple studies were conducted to detect the Huanglongbing (HLB) disease, also 

known as citrus greening. The HLB was first found in the south Florida in 2005, 

and its insect vector (Asian citrus psyllid or ACP) was found in 1998. In California, 

the ACP was first found in 2008, and HLB was found in southern California in 

2012 (UC IPM Online, 2014). Typically, ground inspection is conducted to iden

tify disease symptomatic canopies along with a polymerase chain reaction (PCR) 
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analysis; however, ground scouting is very labor intensive, time consuming, and 

costly. Thus, an aerial detection would be a good alternative. Kumar et al. (2012) 

acquired airborne hyperspectral and multispectral images of HLB-infected citrus 

groves in Florida, and identified the infected canopies using various analysis algo

rithms, including image-derived spectral library, spectral angle mapping (SAM), 

mixture tuned matched filtering (MTMF), and linear spectral unmixing. They 

reported that MTMF yielded the best detection accuracy of 80%, while SAM using 

multispectral images produced an accuracy of 87%. Also, Li et al. (2012) conducted 

a study to detect HLB-infected canopies using airborne hyperspectral and multi-

spectral images. They utilized red edge position (REP) to distinguish infected citrus 

canopies and reported that REP worked better for indoor spectral data than those 

for outdoor measurements. Various detection algorithms were implemented such as 

parallelepiped, minimum distance, Mahalanobis distance, SAM, spectral informa

tion divergence (SID), spectral feature fitting, and MTMF. Figure 6.6 illustrates the 

disease density maps obtained using these methods. They reported that detection 

accuracies were more than 60% for most methods and up to 95% for SID; however, 

simpler methods (minimum distance and Mahalanobis distance) yielded more con

sistent results among all datasets. 

Further, Li et al. (2014) proposed a new method, extended spectral angle mapping 

(ESAM), for identifying HLB-diseased citrus canopies using airborne hyperspectral 

imaging. The method consisted of the Savitzky–Golay smoothing, support vector 

machine classifier, vertex component analysis to find pure end members, SAM, and 

REP for removing false-positives. They reported that the ESAM method yielded a 

(a) (b) (c) 
Legend:
(Trees/ha) 

Low: 0–70 
Medium: 71–140 
High: 141–210 
Severe: >210 

(d) (e) (f ) 

TTT VVV 

TTT VVV 

FIGURE 6.6   (See color insert.) HLB disease density maps in a citrus grove, obtained using 

various detection algorithms. The dashed line in the middle of each map indicates the bound

ary between training (T) and validation (V) sets. (a) Scouted infected trees, (b) MinDist 

result, (c) MahaDist result, (d) SAM result, (e) SID result, and (f) MTMF result. (From Li, X. 

et al. 2012. Computers and Electronics in Agriculture, 83:32–46. With permission.) 
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correct detection accuracy of 86%, while tree maturity status affected the disease 

detection accuracy. 

Instead of using standard manned aircraft, Garcia-Ruiz et al. (2013) utilized a low-

altitude unmanned aerial vehicle (UAV) to detect HLB disease for citrus. With a high 

spatial resolution, images acquired by the UAV performed better than those acquired 

by an aircraft when six spectral band images and seven vegetation indices were used 

for stepwise regression analysis. Accuracies and false-negatives were 67%–85% and 

7%–32% for UAV images, and 61%–74% and 28%–45% for aerial images. 

Besides citrus, tomato is also one of the most consumed specialty crops in the 

United States. Jones et al. (2010) investigated the spectral signature of tomato bacte

rial leaf spot disease in the ultraviolet, visible, and NIR regions, and analyzed reflec

tance measurements of healthy and diseased samples using partial least squares 

regression, correlation coefficients, and stepwise multiple linear regression. They 

identified important wavelengths to distinguish diseased tomato leaves, developed 

disease prediction models, and reported an RMSD of 4.9% in predicting disease  

severity in percent using the best prediction model. 

6.5.4 OTHER RELATED STUDIES  FOR SPECIALTY CROPS 

Toward the development of an efficient mechanical harvester for cherry, Du et al. 

(2013) investigated vibratory energy requirements and harvest efficiency using 

kinetic energy on limbs of fruiting branches, and conducted experiments on upright 

fruiting offshoot trees for mechanical harvesting. They identified constant reso

nant frequencies of 8–10 Hz within the upright offshoots. They calculated a relative 

kinetic energy ratio at different locations on the tree, and reported that resonant 

frequencies were different at different growth stages of budding and fruiting. They 

identified that only a portion of vibratory energy was transmitted through the trellis 

wires and that the fruit was removed mostly at the resonant frequency. 

To develop an automated pruning system for apple, Karkee et al. (2013) initiated 

a study for developing a detection algorithm of pruning branches by constructing 

three-dimensional skeletons of apple trees from images acquired by a time-of-flight

of-light camera. The test results indicated that the algorithm removed 19.5% of the 

branches, while human workers removed an average of 22% of the branches. The 

root mean squared deviation (RMSDEV) of identified branches was 10% between 

the algorithm and human workers, and branch spacing by the algorithm was 35.7 cm, 

while human workers’ spacing was 33.7 cm, resulting in 13% RMSDEV. 

For peach production, Baugher et al. (2010) evaluated a prototype hybrid string 

thinner combining vertical and horizontal thinners with various tree forms at four 

different locations in the United States. They compared its performance with manual 

thinning and reported blossom removal rates of 17%–56% by the prototype, and 

reduced follow-up hand thinning by 19%–100%. The prototype also increased eco

nomic savings of $236–$1490 per acre. 

For lettuce production, commercial thinners are currently available (Agmechtronix, 

2014; Vision Robotics Corp., 2014). For crops at a seedling stage, machine vision is 

used to detect seedlings to be removed, and herbicide is sprayed to kill them. The 

system can be attached to a three-point hitch of a tractor, and the operation speed 
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is 3–4 miles/h. The system can provide advantages of savings over labor-intensive 

hand weeding and increase yield. 

6.5.5 CHALLENGES  AND RESEARCH NEEDS 

As illustrated above, currently there are not many precision technologies available 

for specialty crop production due to lack of low-cost and affordable commercial 

sensing systems. Many sensing systems are still in the research stages, and it is rela

tively difficult to find sponsors for the specialty crop market due to its relatively 

small scale compared with other traditional grain and field crop markets. To address 

the needs of specialty crop industries, the U.S. government established the specialty 

crop research initiative (SCRI) program and provided $215 million for research and 

extension projects during 2008–2012 to encourage specialty crop research and com

mercialization of developed tools and technologies. More integrated research will be 

needed among many disciplines, including growers, agricultural engineers, agrono

mists, horticulturalists, and soil scientists, along with specialty crop growers to iden

tify current challenges, and to develop more creative solutions with more investment 

and support from the general public. 

6.6  SUMMARY AND FUTURE DEVELOPMENT 

Significant progress has been made in precision agriculture technologies over the last 

two decades, despite the fact that the integration and adoption of these technologies 

have been relatively slow. Precision agriculture as a farming strategy is gradually 

changing the way farmers manage their fields. Some technologies developed for pre

cision agriculture have become standard practices in production agriculture. Yield 

monitors and guidance systems are the two most widely used precision agriculture 

technologies by individual farmers today. Other technologies such as GPS-based 

soil sampling, real-time crop and soil sensors, and remote sensing have been used by 

some producers, crop consultants, and agricultural dealers for VRAs of fertilizers, 

herbicides, fungicides, water, seeds, and lime. Although research and field opera

tions have demonstrated the feasibility and potential economic benefits of VRAs of 

various farming inputs, it remains a major challenge for the farmer to integrate all 

the technologies into his or her routine farming practice. Moreover, the farmer is still 

not completely convinced that VRT will change his or her bottom line and will be 

suitable for all the crops or fields. 

Survey results indicate that most agricultural dealers provide one or more pre

cision agriculture technologies, including VRT, for their customers. Owing to the 

sophistication, initial costs, and time commitment of these technologies, it is more 

appropriate for the dealers to provide precision agriculture services until more user-

friendly and integrated systems are available. More research is needed to develop 

improved site-specific recommendation algorithms for sensor-based and map-based 

applications. It is important to keep the algorithms or decision rules simple enough 

for practical applications. VRA can be both profitable and environmentally ben

eficial for fields with large variability in crop yield and soil nutrients as well as 

for fields with patched weeds and isolated disease infections. However, VRA may 
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not be suitable or necessary for fields with little soil and crop growth variability. 

More research is needed to develop criteria and guidelines to identify such fields  

or particular field operations (i.e., fertilization, pesticide application, irrigation, and 

seeding) for VRAs. VRA has great potential for high-value specialty crops such as 

vegetables and fruits, because of their high production cost, susceptibility to pests, 

and intensive labor requirements. More emphasis should be put on the development 

and application of precision agriculture technologies for specialty crop management. 

Precision agriculture is an evolving technology. Although it is important to con

tinue to develop new techniques and enhance existing technologies, more research 

should be devoted to the integration, application, and adoption of these technologies 

so that more and more farmers and dealers will be able to adapt them to current 

practices. Precision agriculture involves a great deal of technologies and requires 

additional investments of money and time, but it can be practiced at different lev

els depending on the specific field and crop conditions and the resources and tech

nology services available to the farmer. If practiced properly, precision agriculture 

can improve farm input efficiency, increase farm profitability and minimize adverse 

environmental impacts, thus improving the long-term sustainability of production 

agriculture. After all, precision agriculture is becoming an indispensable component 

of agricultural production systems. 

DISCLAIMER 

The mention of a commercial product is solely for the purpose of providing specific 

information and should not be construed as a product endorsement by the authors or 

the institutions with which the authors are affiliated. 
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FIGURE 1.5  Residual soil nitrate from Valley City, North Dakota, over the landscape. 

FIGURE 2.4 Typical combine-derived yield map. 
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FIGURE 3.9 Map plots of biochemical parameters, including chlorophyll, total nitrogen, 

soluble sugar, and leaf water content. (a) Chlorophyll concentration (mg g−1), (b) nitrogen con

centration (%), (c) soluble sugar concentration (%), and (d) leaf water content (%). (From Liu, 

L.Y. 2002. Hyperspectral Remote Sensing Application in Precision Agriculture. Postdoctoral 

research report of Institute of Remote Sensing Applications, Chinese Academy of Sciences. 

With permission.) 

FIGURE 3.10 Pseudocolor composition map of biochemical parameters, including chloro

phyll, total nitrogen, and soluble sugar. Red lines: The crops grow poorly in areas with high 

sugar, low nitrogen, and low chlorophyll. Green lines: The crops grow well in the areas with 

low sugar, high nitrogen, and high chlorophyll. (From Liu, L.Y. 2002. Hyperspectral Remote 
Sensing Application in Precision Agriculture. Postdoctoral research report of Institute of 

Remote Sensing Applications, Chinese Academy of Sciences. With permission.) 
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FIGURE 3.16  Key links in decision making for precision agriculture management and pre

scription generation. (From Chen, L.P. et al. 2002. Transactions of the CSAE, 18(2):1145– 

1148. With permission.) 

FIGURE 3.20 Changes in the mean, standard deviation, coefficient of variation, and 

proportion of area with scale for each partition. (a) Illustrates mean value changes with 

scale increasing for each partition; (b) illustrates standard deviation value changes with 

scale increasing for each partition; (c) illustrates coefficient of variation value changes 

with scale increasing for each partition; (d) illustrates area proportion (%) changes with 

scale increasing for each partition. (From Li, X. 2005. Research of Precision Agriculture 
Management Zone Generating Methods Based on ‘3S’ Technique. Doctorate dissertation 

of Beijing Normal University. With permission.) 
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FIGURE 3.22 Partition map after filtering with different scales of window. (From Li, X. 

2005. Research of Precision Agriculture Management Zone Generating Methods Based on 
‘3S’ Technique. Doctorate dissertation of Beijing Normal University. With permission.) 
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FIGURE 3.23  (a) Partitioning results of the K-M algorithm. (b) Partitioning results of the 

SC-KM algorithm. (From Li, X. 2005. Research of Precision Agriculture Management Zone  
Generating Methods Based on ‘3S’ Technique. Doctorate dissertation of Beijing Normal  

University. With permission.) 
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FIGURE 5.7  Examples of an optimized 3D coverage path planning algorithm for a 3D  

terrain where terraces and valleys exist. (From Jin, J. and L. Tang. 2011. Journal of Field 
Robotics, 28:424–440. With permission.) 

FIGURE 6.3 Color-infrared images taken in (a) 2001 and (b) 2011 and (c) overlaid clas

sification map for an irrigated cotton field infected with root rot near Edroy, Texas. (Adapted 

from Yang, C., C.J. Fernandez, and J.H. Everitt. 2005. Transactions of the ASAE, 48(4):1619– 

1626; Yang, C. et al. 2012. Proceedings of the Beltwide Cotton Conferences, Memphis, TN: 

National Cotton Council of America, pp. 475–480.) 
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ing (T) and validation (V) sets. (a) Scouted infected trees, (b) MinDist result, (c) MahaDist 
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FIGURE 10.13  Irrigation soil sensor network. (From Vellidis, G. 2015. Irrigation sensor 

network. Personal communication on teaching material, January 14, 2015. With permission.) 
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7 A Systems Approach 
to Community-Based 

Precision Agriculture
 

Sakae Shibusawa 

CONTENTS 

7.1 INTRODUCTION 

The term “precision agriculture” is widely known in Japan. For example, the term 

scored 120,000 hits on the BIGLOBE website and 1,001,000 hits on Yahoo-Japan 

in 2014, growing from a few hundred in 2000. The hits cover activities in indus

try and agriculture, as well as information technology for scientists, engineers, and 

administrators. In general, they expect that precision agriculture has the potential 

to offer future solutions to complicated issues in agriculture, such as environment 

versus productivity and globalization versus localization. National Research Council 

(1997), SKY-farm (1999), and Vanacht (2001) mention that precision agriculture is a 

management strategy based on advanced information technology, including describ

ing and modeling soil and plant variability and integrating variable-rate field opera

tions to meet site-specific requirements, all aiming at increasing economic returns as 

well as reducing energy input and environmental impacts. 

In the last decades, multiple concerns such as shortage of food and water, global 

warming, and energy crises have crept up on people. As for food supply, world food 

production has increased with food consumption of cereal crops in half a century, 

although in the last decade, production could not catch up with consumption, as 

shown in Figure 7.1a. The demand for crops has increased due to increases in popu

lation, industrial needs, and meaty, fatty diets accompanying lifestyle changes. A 

major contribution to increases in the net yield of crops has been the increase in 

yield per unit area, that is, increased land productivity, while the area of harvest 
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